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0.1 Introduction

This project originally aimed to record important open problems of interest
to researchers in computational geometry and related fields. It commenced
in 2001 with the publication of thirty problems in Computational Geometry
Column 42 [MO01] (see Problems 1–30), and then grew to over 75 problems.

While we are no longer encouraging new problem submissions, we strongly
encourage updates to existing problems, especially when those problems have
been solved (completely or partially). Updates should be done in the form of a
Github Pull Request; see the Github repository.

Each problem is assigned a unique number for citation purposes. Problem
numbers also indicate the order in which the problems were entered. Each
problem is classified as belonging to one or more categories.

The problems are also available as a single PDF file.

0.2 Categorized List of All Problems

Below, each category lists the problems that are classified under that category.
Note that each problem may be classified under several categories.

arrangements:

� 3-Colorability of Arrangements of Great Circles (Problem 44)

art galleries:

� Vertex π-Floodlights (Problem 23)

coloring:

� 3-Colorability of Arrangements of Great Circles (Problem 44)

combinatorial geometry:

� k-sets (Problem 7)

� Binary Space Partition Size (Problem 14)
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� Chromatic Number of the Plane (Problem 57)

� Counting Polyominoes (Problem 37)

� Distances among Point Sets in R2 and R3 (Problem 39)

� Extending Pseudosegment Arrangements by Subdivision (Problem 34)

� Lines Tangent to Four Unit Balls (Problem 61)

� Monochromatic Triangles (Problem 58)

� Pushing Disks Together (Problem 18)

� Rolling a Die over a Labeled Board (Problem 68)

� Slicing Axes-Parallel Rectangles (Problem 74)

� The Number of Pointed Pseudotriangulations (Problem 40)

� Thrackles (Problem 30)

� Union of Fat Objects in 3D (Problem 4)

� Vertical Decompositions in Rd (Problem 19)

convex hulls:

� Dynamic Planar Convex Hull (Problem 12)

� Dynamic Planar Nearest Neighbors (Problem 63)

� Inplace Convex Hull of a Simple Polygonal Chain (Problem 36)

� Output-sensitive Convex Hull in Rd (Problem 15)

data structures:

� Binary Space Partition Size (Problem 14)

� Dynamic Planar Convex Hull (Problem 12)

� Dynamic Planar Nearest Neighbors (Problem 63)

� Point Location in 3D Subdivision (Problem 13)

Delaunay triangulations:

� Flip Graph Connectivity in 3D (Problem 28)

� Stretch-Factor for Points in Convex Position (Problem 71)

� Voronoi Diagram of Moving Points (Problem 2)

dissections:

� Congruent Partitions of Polygons (Problem 73)

folding and unfolding:

� Edge-Unfolding Convex Polyhedra (Problem 9)

� Edge-Unfolding Polycubes (Problem 64)
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� General Unfoldings of Nonconvex Polyhedra (Problem 43)

� Vertex-Unfolding Polyhedra (Problem 42)

� Volume Maximizing Convex Shape (Problem 62)

geometric graphs:

� Edge-Coloring Geometric Graphs (Problem 75)

� Thrackles (Problem 30)

� Yao-Yao Graph a Spanner? (Problem 70)

graph drawing:

� 3D Minimum-Bend Orthogonal Graph Drawings (Problem 46)

� Isoceles Planar Graph Drawing (Problem 69)

� Linear-Volume 3D Grid Drawings of Planar Graphs (Problem 51)

� Queue-Number of Planar Graphs (Problem 52)

� Smallest Universal Set of Points for Planar Graphs (Problem 45)

� Thrackles (Problem 30)

graphs:

� Minimum-Turn Cycle Cover in Planar Grid Graphs (Problem 53)

� Smallest Universal Set of Points for Planar Graphs (Problem 45)

� Thrackles (Problem 30)

� Traveling Salesman Problem in Solid Grid Graphs (Problem 54)

linear programming:

� Linear Programming: Strongly Polynomial? (Problem 8)

lower bounds:

� 3SUM Hard Problems (Problem 11)

� Sorting X + Y (Pairwise Sums) (Problem 41)

meshing:

� Hexahedral Meshing (Problem 27)

� Most Circular Partition of a Square (Problem 59)

minimum spanning tree:

� Bounded-Degree Minimum Euclidean Spanning Tree (Problem 48)

� Euclidean Minimum Spanning Tree (Problem 5)

numerical computations:
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� Sum of Square Roots (Problem 33)

optimization:

� Bounded-Degree Minimum Euclidean Spanning Tree (Problem 48)

� Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots
(Problem 35)

� Minimum-Turn Cycle Cover in Planar Grid Graphs (Problem 53)

� Packing Unit Squares in a Simple Polygon (Problem 56)

� Pallet Loading (Problem 55)

� Planar Euclidean Maximum TSP (Problem 49)

� Traveling Salesman Problem in Solid Grid Graphs (Problem 54)

packing:

� Most Circular Partition of a Square (Problem 59)

� Packing Unit Squares in a Simple Polygon (Problem 56)

� Pallet Loading (Problem 55)

� Rectangling a Rectangle (Problem 78)

partitioning:

� Congruent Partitions of Polygons (Problem 73)

� Fair Partitioning of Convex Polygons (Problem 67)

partitioning.:

� Rectangling a Rectangle (Problem 78)

planar graphs:

� Bar-Magnet Polyhedra (Problem 32)

� Isoceles Planar Graph Drawing (Problem 69)

� Pointed Spanning Trees in Triangulations (Problem 50)

point sets:

� k-sets (Problem 7)

� Bounded-Degree Minimum Euclidean Spanning Tree (Problem 48)

� Magic Configurations (Problem 65)

� Minimum-Turn Cycle Cover in Planar Grid Graphs (Problem 53)

� Planar Euclidean Maximum TSP (Problem 49)

� Simple Polygonalizations (Problem 16)

� Smallest Universal Set of Points for Planar Graphs (Problem 45)
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� Surface Reconstruction (Problem 26)

� Traveling Salesman Problem in Solid Grid Graphs (Problem 54)

point sets.:

� Reflexivity of Point Sets (Problem 66)

polygons:

� Congruent Partitions of Polygons (Problem 73)

� Fair Partitioning of Convex Polygons (Problem 67)

� Hinged Dissections (Problem 47)

� Reflexivity of Point Sets (Problem 66)

� Simple Polygonalizations (Problem 16)

� Transforming Polygons via Vertex-Centroid Moves (Problem 60)

polyhedra:

� 3-Colorability of Arrangements of Great Circles (Problem 44)

� Bar-Magnet Polyhedra (Problem 32)

� Edge-Unfolding Convex Polyhedra (Problem 9)

� Edge-Unfolding Polycubes (Problem 64)

� Equiprojective Polyhedra (Problem 76)

� General Unfoldings of Nonconvex Polyhedra (Problem 43)

� Hamiltonian Tetrahedralizations (Problem 29)

� Polyhedron with Regular Pentagon Faces (Problem 72)

� Vertex-Unfolding Polyhedra (Problem 42)

� Zipper Unfoldings of Convex Polyhedra (Problem 77)

reconstruction:

� Surface Reconstruction (Problem 26)

robotics:

� Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots
(Problem 35)

scheduling:

� Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots
(Problem 35)

shortest paths:

� Euclidean Minimum Spanning Tree (Problem 5)
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� Minimum Euclidean Matching in 2D (Problem 6)

� Minimum-Link Path in 2D (Problem 22)

� Shortest Paths among Obstacles in 2D (Problem 21)

simplification:

� Polygonal Curve Simplification (Problem 24)

� Polyhedral Surface Approximation (Problem 25)

spanners:

� Stretch-Factor for Points in Convex Position (Problem 71)

� Yao-Yao Graph a Spanner? (Problem 70)

stabbing:

� Minimum Stabbing Spanning Tree (Problem 20)

traveling salesman:

� Minimum-Turn Cycle Cover in Planar Grid Graphs (Problem 53)

� Planar Euclidean Maximum TSP (Problem 49)

� Traveling Salesman Problem in Solid Grid Graphs (Problem 54)

triangulations:

� Compatible Triangulations (Problem 38)

� Flip Graph Connectivity in 3D (Problem 28)

� Hamiltonian Tetrahedralizations (Problem 29)

� Minimum Weight Triangulation (Problem 1)

� Pointed Spanning Trees in Triangulations (Problem 50)

� Simple Linear-Time Polygon Triangulation (Problem 10)

� The Number of Pointed Pseudotriangulations (Problem 40)

visibility:

� Trapping Light Rays with Segment Mirrors (Problem 31)

� Vertex π-Floodlights (Problem 23)

� Visibility Graph Recognition (Problem 17)

Voronoi diagrams:

� Dynamic Planar Nearest Neighbors (Problem 63)

� Voronoi Diagram of Lines in 3D (Problem 3)

� Voronoi Diagram of Moving Points (Problem 2)
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1 Numerical List of All Problems

The following lists all problems sorted by number. These numbers can be used
for citations and correspond to the order in which the problems were entered.

� Problem 1: Minimum Weight Triangulation

� Problem 2: Voronoi Diagram of Moving Points

� Problem 3: Voronoi Diagram of Lines in 3D

� Problem 4: Union of Fat Objects in 3D

� Problem 5: Euclidean Minimum Spanning Tree

� Problem 6: Minimum Euclidean Matching in 2D

� Problem 7: k-sets

� Problem 8: Linear Programming: Strongly Polynomial?

� Problem 9: Edge-Unfolding Convex Polyhedra

� Problem 10: Simple Linear-Time Polygon Triangulation

� Problem 11: 3SUM Hard Problems

� Problem 12: Dynamic Planar Convex Hull

� Problem 13: Point Location in 3D Subdivision

� Problem 14: Binary Space Partition Size

� Problem 15: Output-sensitive Convex Hull in Rd

� Problem 16: Simple Polygonalizations

� Problem 17: Visibility Graph Recognition

� Problem 18: Pushing Disks Together

� Problem 19: Vertical Decompositions in Rd

� Problem 20: Minimum Stabbing Spanning Tree

� Problem 21: Shortest Paths among Obstacles in 2D

� Problem 22: Minimum-Link Path in 2D

� Problem 23: Vertex π-Floodlights

� Problem 24: Polygonal Curve Simplification

� Problem 25: Polyhedral Surface Approximation
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� Problem 26: Surface Reconstruction

� Problem 27: Hexahedral Meshing

� Problem 28: Flip Graph Connectivity in 3D

� Problem 29: Hamiltonian Tetrahedralizations

� Problem 30: Thrackles

� Problem 31: Trapping Light Rays with Segment Mirrors

� Problem 32: Bar-Magnet Polyhedra

� Problem 33: Sum of Square Roots

� Problem 34: Extending Pseudosegment Arrangements by Subdivision

� Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of
Robots

� Problem 36: Inplace Convex Hull of a Simple Polygonal Chain

� Problem 37: Counting Polyominoes

� Problem 38: Compatible Triangulations

� Problem 39: Distances among Point Sets in R2 and R3

� Problem 40: The Number of Pointed Pseudotriangulations

� Problem 41: Sorting X + Y (Pairwise Sums)

� Problem 42: Vertex-Unfolding Polyhedra

� Problem 43: General Unfoldings of Nonconvex Polyhedra

� Problem 44: 3-Colorability of Arrangements of Great Circles

� Problem 45: Smallest Universal Set of Points for Planar Graphs

� Problem 46: 3D Minimum-Bend Orthogonal Graph Drawings

� Problem 47: Hinged Dissections

� Problem 48: Bounded-Degree Minimum Euclidean Spanning Tree

� Problem 49: Planar Euclidean Maximum TSP

� Problem 50: Pointed Spanning Trees in Triangulations

� Problem 51: Linear-Volume 3D Grid Drawings of Planar Graphs

� Problem 52: Queue-Number of Planar Graphs
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� Problem 53: Minimum-Turn Cycle Cover in Planar Grid Graphs

� Problem 54: Traveling Salesman Problem in Solid Grid Graphs

� Problem 55: Pallet Loading

� Problem 56: Packing Unit Squares in a Simple Polygon

� Problem 57: Chromatic Number of the Plane

� Problem 58: Monochromatic Triangles

� Problem 59: Most Circular Partition of a Square

� Problem 60: Transforming Polygons via Vertex-Centroid Moves

� Problem 61: Lines Tangent to Four Unit Balls

� Problem 62: Volume Maximizing Convex Shape

� Problem 63: Dynamic Planar Nearest Neighbors

� Problem 64: Edge-Unfolding Polycubes

� Problem 65: Magic Configurations

� Problem 66: Reflexivity of Point Sets

� Problem 67: Fair Partitioning of Convex Polygons

� Problem 68: Rolling a Die over a Labeled Board

� Problem 69: Isoceles Planar Graph Drawing

� Problem 70: Yao-Yao Graph a Spanner?

� Problem 71: Stretch-Factor for Points in Convex Position

� Problem 72: Polyhedron with Regular Pentagon Faces

� Problem 73: Congruent Partitions of Polygons

� Problem 74: Slicing Axes-Parallel Rectangles

� Problem 75: Edge-Coloring Geometric Graphs

� Problem 76: Equiprojective Polyhedra

� Problem 77: Zipper Unfoldings of Convex Polyhedra

� Problem 78: Rectangling a Rectangle
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Problem 1: Minimum Weight Triangulation

Statement Can a minimum weight triangulation of a planar point set be found
in polynomial time? The weight of a triangulation is its total edge length.

Origin Perhaps E. L. Lloyd, 1977: [Llo77], cited in Garey and Johnson [GJ79].

Status/Conjectures Just solved by Wolfgang Mulzer and Günter Rote, Jan-
uary 2006! http://arxiv.org/abs/cs.CG/0601002. Entry to be up-
dated later...

This problem is one of the few from Garey and Johnson [GJ79, p. 288]
whose complexity status remains unknown.

Partial and Related Results The best approximation algorithms achieve a
(large) constant times the optimal length [LK96]; good heuristics are
known [DMM95]. If Steiner points are allowed, again constant-factor ap-
proximations are known [Epp94, CL98], but it is open to decide even if
a minimum-weight Steiner triangulation exists (the minimum might be
approached only in the limit).

Appearances [MO01]

Categories triangulations

Entry Revision History J. O’Rourke, 31 Jul. 2001; J. O’Rourke, 3 Jan.
2006.

References

[CL98] Siu-Wing Cheng and Kam-Hing Lee. Quadtree decomposition,
Steiner triangulation, and ray shooting. In ISAAC: 9th Internat.
Sympos. Algorithms Computation, pages 367–376, 1998.

[DMM95] Matthew T. Dickerson, Scott A. McElfresh, and Mark H. Mon-
tague. New algorithms and empirical findings on minimum weight
triangulation heuristics. In Proc. 11th Annu. ACM Sympos. Com-
put. Geom., pages 238–247, 1995.

[Epp94] D. Eppstein. Approximating the minimum weight Steiner trian-
gulation. Discrete Comput. Geom., 11:163–191, 1994.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, New
York, NY, 1979.

[Llo77] Errol Lynn Lloyd. On triangulations of a set of points in the plane.
In Proc. 18th Annu. IEEE Sympos. Found. Comput. Sci., pages
228–240, 1977.
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[LK96] Christos Levcopoulos and Drago Krznaric. Quasi-greedy trian-
gulations approximating the minimum weight triangulation. In
Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 392–
401, 1996.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

Problem 2: Voronoi Diagram of Moving Points

Statement What is the maximum number of combinatorial changes possible
in a Euclidean Voronoi diagram of a set of n points each moving along a
line at unit speed in two dimensions?

Origin Unknown (to JOR). Perhaps Michael Atallah?

Status/Conjectures Long conjectured to be nearly quadratic. Solved now:
[Rub15]. Natan Rubin proved an upper bound of O(n2+ϵ), and a quadratic
lower bound is known.

Partial and Related Results See [Rub15] for a review of earlier work, now
superceded.

Appearances [MO01]

Categories Voronoi diagrams; Delaunay triangulations

Entry Revision History J. O’Rourke, 1 Aug. 2001; 19Sep2017.

References

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[Rub15] Natan Rubin. On kinetic Delaunay triangulations: A near-
quadratic bound for unit speed motions. Journal of the ACM,
62(3):25, 2015.

Problem 3: Voronoi Diagram of Lines in 3D

Statement What is the combinatorial complexity of the Voronoi diagram of a
set of lines (or line segments) in three dimensions?

Origin Uncertain, pending investigation.

Status/Conjectures Open. Conjectured to be nearly quadradic.
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Partial and Related Results There is a gap between a lower bound of Ω(n2)
and an upper bound that is essentially cubic [Sha94] for the Euclidean case
(and yet is quadratic for polyhedral metrics [BSTY98]). A recent advance
shows that the “level sets” of the Voronoi diagram of lines, given by the
union of a set of cylinders, indeed has near-quadratic complexity [AS00b].

Related Open Problems This problem is closely related to Problem 1, be-
cause points moving in the plane with constant velocity yield straight-line
trajectories in space-time.

Appearances [MO01]

Categories Voronoi diagrams

Entry Revision History J. O’Rourke, 2 Aug. 2001; 13 Dec. 2001.

References

[AS00b] Pankaj K. Agarwal and Micha Sharir. Pipes, cigars, and kreplach:
The union of Minkowski sums in three dimensions. Discrete Com-
put. Geom., 24(4):645–685, 2000.

[BSTY98] Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mari-
ette Yvinec. Voronoi diagrams in higher dimensions under cer-
tain polyhedral distance functions. Discrete Comput. Geom.,
19(4):473–484, 1998.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[Sha94] Micha Sharir. Almost tight upper bounds for lower envelopes in
higher dimensions. Discrete Comput. Geom., 12:327–345, 1994.

Problem 4: Union of Fat Objects in 3D

Statement What is the complexity of the union of “fat” objects in R3?

Origin Uncertain, pending investigation.

Status/Conjectures Open. Conjectured to be nearly quadratic.

Partial and Related Results The Minkowski sum of polyhedra of n vertices
with the (Euclidean) unit ball has complexity O(n2+ϵ) [AS99], as does the
union of n congruent cubes [PSS01]. It is widely believed the same should
hold true for fat objects, those with a bounded ratio of circumradius to
inradius, as it does in R2 [ES00].

Appearances [MO01]
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Categories combinatorial geometry

Entry Revision History J. O’Rourke, 1 Aug. 2001; 1 Jan. 2003 (B. Aronov
comment).

References

[AS99] Pankaj K. Agarwal and Micha Sharir. Pipes, cigars, and kreplach:
The union of Minkowski sums in three dimensions. In Proc. 15th
Annu. ACM Sympos. Comput. Geom., pages 143–153, 1999.

[ES00] A. Efrat and Micha Sharir. On the complexity of the union of fat
objects in the plane. Discrete Comput. Geom., 23:171–189, 2000.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[PSS01] Janos Pach, Ido Safruit, and Micha Sharir. The union of congruent
cubes in three dimensions. In Proc. 17th Annu. ACM Sympos.
Comput. Geom., pages 19–28, 2001.

Problem 5: Euclidean Minimum Spanning Tree

Statement Can the Euclidean minimum spanning tree (MST) of n points in
Rd be computed in time close to the lower bound of Ω(n log n) [GKFS96]?

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results Several algorithms have been developed for gen-
eral graphs with arbitrary edge weights. Chazelle presented anO(mα(m,n) logα(m,n))-
time algorithm [Cha97], and then anO(mα(m,n))-time algorithm [Cha00b],
where α(m,n) is the functional inverse of Ackermann’s function, and n and
m are the number of vertices and edges respectively in the graph. Pettie
and Ramachandran have since given an optimal algorithm for the graph
setting [PR02], whose running time is an unknown function between Ω(m)
and O(mα(m,n)). In particular, when m = Ω(n log n), α(m,n) = O(1)
and these time bounds are all linear in the number of edges, m.

But in the geometric setting, the graph is complete, so a time bound linear
in the number of edges, m, is quadratic in the number of points, n. And
indeed the best upper bounds for the Euclidean MST approach quadratic
for large d, e.g., [CK95].

Related Open Problems This problem is intimately related to the bichro-
matic closest pair problem [AESW91].
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Appearances [MO01]

Categories minimum spanning tree; shortest paths

Entry Revision History J. O’Rourke, 2 Aug. 2001; E. Demaine, 7 July 2002.

References

[AESW91] Pankaj K. Agarwal, Herbert Edelsbrunner, O. Schwarzkopf, and
Emo Welzl. Euclidean minimum spanning trees and bichromatic
closest pairs. Discrete Comput. Geom., 6(5):407–422, 1991.

[Cha97] Bernard Chazelle. A faster deterministic algorithm for minimum
spanning trees. In Proc. 38th Annu. IEEE Sympos. Found. Com-
put. Sci., pages 22–31, 1997.

[Cha00b] Bernard Chazelle. A minimum spanning tree algorithm with
inverse-Ackermann type complexity. J. ACM, 47(6):1028–1047,
November 2000.

[CK95] P. B. Callahan and S. Rao Kosaraju. A decomposition of mul-
tidimensional point sets with applications to k-nearest-neighbors
and n-body potential fields. J. Assoc. Comput. Mach., 42:67–90,
1995.

[GKFS96] Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der Heide,
and Roman Smolensky. A lower bound for randomized algebraic
decision trees. In Proc. 28th Annu. ACM Sympos. Theory Com-
put., pages 612–619, 1996.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum
spanning tree algorithm. J. ACM, 49(1):16–34, January 2002.

Problem 6: Minimum Euclidean Matching in 2D

Statement What is the complexity of computing a minimum-cost Euclidean
matching for 2n points in the plane? The cost of a matching is the total
length of the edges in the matching.

Origin Uncertain, pending investigation.

Status/Conjectures Open.
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Partial and Related Results An algorithm that achieves the minimum and
runs in nearly O(n2.5) time has long been available [Vai89]. This was
improved to O(n1.5 log5 n) in [Var98]. Recently Arora showed how to
achieve a (1 + ϵ)-approximation in n(log n)O(1/ϵ) time [Aro98], and this
has been improved to O((n/ϵ3) log6 n) time [VA99].

A special case of considerable interest is bipartite matching, in which the
points are red or blue and the matching connects points of different color.
Here O(n2+ϵ) has been achieved [AES99], and a (1+ϵ)-approximation can
be found in O((n/ϵ)1.5 log5 n) time [VA99].

Appearances [MO01]

Categories shortest paths

Entry Revision History J. O’Rourke, 2 Aug. 2001; 30 Aug. 2001; 13 Dec.
01 (thanks to M. Sharir).

References

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Eu-
clidean traveling salesman and other geometric problems. J. As-
soc. Comput. Mach., 45(5):753–782, 1998.

[AES99] P. K. Agarwal, A. Efrat, and Micha Sharir. Vertical decomposi-
tion of shallow levels in 3-dimensional arrangements and its appli-
cations. SIAM J. Comput., 29:912–953, 1999.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[Var98] K. Varadarajan. A divide and conquer algorithm for min-cost
perfect matching in the plane. In Proc. 39th Annu. IEEE Sympos.
Found. Comput. Sci., pages 320–329, 1998.

[Vai89] P. M. Vaidya. Geometry helps in matching. SIAM J. Comput.,
18:1201–1225, 1989.

[VA99] K. R. Varadarajan and Pankaj K. Agarwal. Approximation algo-
rithms for bipartite and non-bipartite matching in the plane. In
Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 805–
814, 1999.

Problem 7: k-sets

Statement What is the maximum number of k-sets? (Equivalently, what is
the maximum complexity of a k-level in an arrangement of hyperplanes?)
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Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results For a given set P of n points, S ⊂ P is a k-set
if |S| = k and S = P ∩ H for some open halfspace H. Even for points
in two dimensions the problem remains open: The maximum number of
k-sets as a function of n and k is known to be O(nk1/3) by a recent
advance of Dey [Dey98], while the best lower bound is only slightly super-
linear [Tot00].

Appearances [MO01]

Categories combinatorial geometry; point sets

Entry Revision History J. O’Rourke, 2 Aug. 2001.

References

[Dey98] T. K. Dey. Improved bounds on planar k-sets and related prob-
lems. Discrete Comput. Geom., 19:373–382, 1998.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[Tot00] Géza Toth. Point sets with many k-sets. In Proc. 16th Annu.
ACM Sympos. Comput. Geom., pages 37–42, 2000.

Problem 8: Linear Programming: Strongly Poly-
nomial?

Statement Is linear programming strongly polynomial?

Origin Nimrod Megiddo [Meg82][Meg83].

Status/Conjectures Open.

Partial and Related Results It is known to be weakly polynomial, that is,
polynomial in the bit complexity of the input data [Kha80, Kar84]. Subex-
ponential time is achievable via a randomized algorithm [MSW96]. In any
fixed dimension, linear programming can be solved in strongly polynomial
linear time (linear in the input size), established in dimensions 2 and 3
in [Dye84] and for all dimensions in [Meg84].

Appearances [MO01]

Categories linear programming
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Entry Revision History J. O’Rourke, 2 Aug 2001, 16 Jul 2007; E. Demaine,
12 Mar 2010.

References

[Dye84] M. E. Dyer. Linear time algorithms for two- and three-variable
linear programs. SIAM J. Comput., 13:31–45, 1984.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4:373–395, 1984.

[Kha80] L. G. Khachiyan. Polynomial algorithm in linear programming.
U.S.S.R. Comput. Math. and Math. Phys., 20:53–72, 1980.

[Meg82] N. Megiddo. Is binary encoding appropriate for the problem-
language relationship? Theoret. Comput. Sci., 19:337–341, 1982.

[Meg84] N. Megiddo. Linear programming in linear time when the dimen-
sion is fixed. J. Assoc. Comput. Mach., 31:114–127, 1984.

[Meg83] N. Megiddo. Towards a genuinely polynomial algorithm for linear
programming. SIAM J. Comput., 12:347–353, 1983.

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[MSW96] J. Matoušek, Micha Sharir, and Emo Welzl. A subexponential
bound for linear programming. Algorithmica, 16:498–516, 1996.

Problem 9: Edge-Unfolding Convex Polyhedra

Statement Can every convex polyhedron be cut along its edges and unfolded
flat to a single, nonoverlapping, simple polygon?

Origin First stated in [She75], but in spirit at least goes back to Albrecht
Dürer [Dür25].

Status/Conjectures Open. It seems to be a widespead hunch that the answer
is yes.

Partial and Related Results The answer is known to be no for nonconvex
polyhedra even with triangular faces [BDE+03], but has been long open
for convex polyhedra [She75, O’R00].

Related Open Problems Problem 1: Vertex-Unfolding Polyhedra.
Problem 1: General Unfolding of Nonconvex Polyhedra.
Problem 1: Edge-Unfolding Polyhedra Built from Cubes.
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Problem 10: Simple Linear-Time Polygon Trian-
gulation

Statement Is there a deterministic, linear-time polygon triangulation algo-
rithm significantly simpler than that of Chazelle [Cha91]?

Origin Implicit since Chazelle’s 1990 linear-time algorithm.

Status/Conjectures Open.

Partial and Related Results Simple randomized algorithms that are close
to linear-time are known [Sei91], and a recent randomized linear-time al-
gorithm [AGR00] avoids much of the intricacies of Chazelle’s algorithm.
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Related Open Problems Relatedly, is there a simple linear-time algorithm
for computing a shortest path in a simple polygon, without first applying
a more complicated triangulation algorithm?
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Problem 11: 3SUM Hard Problems

Statement Can the class of 3SUM hard problems be solved in subquadratic
time? These problems can be reduced from the problem of determining
whether, given three sets of integers, A, B, and C with total size n, there
are elements a ∈ A, b ∈ B, and c ∈ C such that a+ b = c.

Origin [GO95].

Status/Conjectures Open.

Motivation Many fundamental geometric problems fall in this class, e.g., com-
puting the area of the union of n triangles.

Partial and Related Results Ω(n2) lower bounds are known for 3SUM and a
few 3SUM-hard problems in restricted decision tree models of computation
[ES95, Eri99a, Eri99b].
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3SUM and its obvious generalizations (4SUM, 5SUM, etc.) are examples
of linear satisfiability problems. A generic linear satisfiability problem
asks, given an array of n integers, do any r of them satisfy the equation

α1x1 + α2x2 + · · ·+ αrxr = α0

where α0, α1, α2, . . . , αr are fixed constants. Erickson [Eri99a] proved an
Ω(n⌈r/2⌉) lower bound for any problem of this type, in the restricted linear
decision tree model. This lower bound is tight except for a logarithmic
factor when r is even. Ailon and Chazelle generalized Erickson’s bound
and improve it for large r or for more than r variables [AC05].

Baran et al. [BDP05] show that subquadratic algorithms for 3SUM are
possible in common models of computation that allow more direct manip-
ulation of the numbers instead of just real arithmetic, such as the word
RAM. The improvement they obtain is roughly quadratic in the paral-
lelism offered by the model; for example, with lg n-bit words, they obtain

an O(n2
(

lg lgn
lgn

)2

)-time algorithm. With this word size, the 3SUM prob-

lem becomes whether any improvement beyond polylogarithmic factors
(or indeed, beyond Θ(lg2 n)) is possible.
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Problem 12: Dynamic Planar Convex Hull

Statement Can a planar convex hull be maintained to support both dynamic
updates and queries in logarithmic time? More precisely, is there a data
structure supporting insertions and deletions of points and supporting
various queries about the convex hull of the current set of n points, all
in O(log n) time per operation? An extreme-point query asks to find the
vertex of the convex hull that is extreme in a given direction. A tangent
query asks to determine whether a given point is interior to the convex
hull, and if not, to find the two tangent lines of the convex hull that
passes through the given point. A gift-wrapping query asks to find the
two vertices of the convex hull adjacent to a given vertex of the convex
hull. A line-stabbing query asks to find the two edges of the convex hull
(if any) that intersect a given line. (Note that two extreme-point queries
suffice to determine whether a line intersects the convex hull, while a line-
stabbing query determines where exactly the line intersects the convex
hull if it does.)

Origin Uncertain, pending investigation.

Status/Conjectures Solved (in a certain sense) by Gerth Brodal and Riko
Jacob in a FOCS 2002 paper [BJ02]. See also Jacob’s PhD thesis [Jac02]
for further details. Their data structure supports insertions and dele-
tions in O(log n) amortized time and supports extreme-point, tangent,
and gift-wrapping queries in O(log n) worst-case query bounds. It remains
open whether a logarithmic bound can be achieved in the worst case, and
whether logarithmic bounds can be achieved (amortized or worst case) for
line-stabbing queries.

Partial and Related Results For 17 years, the authority on this problem
was Overmars and van Leeuwen’s paper [OvL81] which describes a data
structure supporting insertions and deletions in O(log2 n) worst-case time
and all types of queries described above in O(log n) worst-case time. Var-
ious structures achieve faster update times when either insertions or dele-
tions are not supported [Pre79, HS92]. But the O(log2 n) barrier remained
until Chan’s FOCS 1999 paper [Cha99], which improved the insertion and
deletion time to O(log1+ϵ n) amortized for any ϵ > 0. The update time
was further improved to O(log n log log n) amortized by Brodal and Jacob
[BJ00] until the problem was finally solved in optimal O(log n) amortized
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time by the same authors [BJ02, Jac02]. Both the Chan and the Brodal
and Jacob structures support extreme-point, tangent, and gift-wrapping
queries.

Related Open Problems Problem 1.
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Problem 13: Point Location in 3D Subdivision

Statement Is there an O(n)-space data structure that supports O(log n)-time
point-location queries in a three-dimensional subdivision of n faces?

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results CurrentlyO(n log n) space andO(log2 n) queries
are achievable [Sno97].
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Problem 14: Binary Space Partition Size

Statement Is it possible to construct a binary space partition (BSP) for n
disjoint line segments in the plane of size less than Θ(n log n)?

Origin Paterson and Yao [PY90].

Status/Conjectures Solved by Csaba Tóth [Tót09, Tót11].

Partial and Related Results The upper bound of O(n log n) was established
by Paterson and Yao [PY90]. Tóth [Tót01b] improved the trivial Ω(n)
lower bound to Ω(n log n/ log log n). Then in 2009 he established a match-
ing upper bound [Tót09, Tót11]. His proof is constructive and leads to a
deterministic algorithm that runs inO(n polylog n) time. As his algorithm
produces BSP trees whose height might be linear in n, it remains open
whether his complexity bound can be achieved while achieving O(log n)
height.
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Problem 15: Output-sensitive Convex Hull in Rd

Statement What is the best output-sensitive convex hull algorithm for n points
in Rd?

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results The lower bound is Ω(n log f + f) for f facets

(the output size). The best upper bound to date isO(n log f+(nf)1−δ logO(1) n)
with δ = 1/(⌊d/2⌋+ 1) [Cha96], which is optimal for sufficiently small f .
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Problem 16: Simple Polygonalizations

Statement Can the number of simple polygonalizations of a set of n points in
the plane be computed in polynomial time? A simple polygonalization is
a simple polygon whose vertices are the points.

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results Certain special cases are known (e.g., for com-
puting the number of monotone simple polygonalizations [ZSSM96]), but
the general problem remains open. The problem is closely related to that
of generating a “random” instance of a simple polygon on a given set of
vertices, with each instance being generated with probability 1/k, where
k is the total number of simple polygonalizations. Heuristic methods are
known and implemented [AH96].

See [CHUZ01] and [HMO+09] for related topics and references to relevant
papers.
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Problem 17: Visibility Graph Recognition

Statement Given a visibility graph G and a Hamiltonian circuit C, determine
in polynomial time whether there is a simple polygon whose vertex visi-
bility graph is G, and whose boundary corresponds to C.

Origin ElGindy(?)

Status/Conjectures Open.

Partial and Related Results The problem is not even known to be in NP [O’R93],
although it is for “pseudo-polygon” visibility graphs [OS97].

Appearances [MO01]

Categories visibility

Entry Revision History J. O’Rourke, 2 Aug. 2001.

References

[MO01] J. S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582,
2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[O’R93] Joseph O’Rourke. Computational geometry column 18. Internat.
J. Comput. Geom. Appl., 3(1):107–113, 1993. Also in SIGACT
News 24:1 (1993), 20–25.

[OS97] Joseph O’Rourke and Ileana Streinu. Vertex-edge pseudo-visibility
graphs: Characterization and recognition. In Proc. 13th Annu.
ACM Sympos. Comput. Geom., pages 119–128, 1997.

26



Problem 18: Pushing Disks Together

Statement When a collection of disks are pushed closer together, so that no
distance between two center points increases, can the area of their union
increase?

Origin Kneser (1955) and Poulsen (1954).

Status/Conjectures Solved by K. Bezdek and R. Connelly. See their web
page1. (Update as of 3 Aug. 2000.)

Partial and Related Results Previously only settled in the continuous-motion
case [BS98], for both this and the corresponding question for intersection
area decrease [Cap96]. But now both solved; see above.
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Problem 19: Vertical Decompositions in Rd

Statement What is the complexity of the vertical decomposition of n surfaces
in Rd, d ≥ 5?

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results The lower bound of Ω(nd) was nearly achieved
up to d = 3 [AS00a, p. 271], but a gap remained for d ≥ 4. A recent
result [Kol01] covers d = 4 and achieves O(n2d−4+ϵ) for general d, leaving
a gap for d ≥ 5.

1http://www.math.cornell.edu/ connelly/kneser.html
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Problem 20: Minimum Stabbing Spanning Tree

Statement What is the complexity of computing a spanning tree of a planar
point set P having minimum stabbing number? The stabbing number of
a tree T is the maximum number of edges of T intersected by a line.

Origin Uncertain, pending investigation.

Status/Conjectures Solved, October 2003: the problem is NP-complete. Sig-
nificant advance on approximability in 2009.

Partial and Related Results Fekete, Lübbecke, and Meijer [FLM04] proved
strong NP-completeness of minimizing the stabbing number or axis-parallel
stabbing number or crossing number or axis-parallel crossing number in a
perfect matching or spanning tree. They also establish inapproximability
by less than a 6/5 factor of minimizing the axis-parallel stabbing num-
ber in a perfect matching. They also prove strong NP-completeness of
minimizing the axis-parallel crossing number in a triangulation.

The complexity of minimizing the stabbing number or crossing number in
a triangulation remains open. Furthermore, it remains open whether any
of these problems have constant-factor approximations. See [FLM04] for
some ideas.

In the worst case, any set of n points in the plane has a spanning tree of
stabbing number O(

√
n) [Aga92, Cha88, Wel93] and this bound is tight.

An O(
√
n)-approximation follows from this result.
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There has been an advance on approximations [HP09]: Har-Peled designed
an algorithm that computes a spanning tree of n points P in Rd whose
crossing number is O(min(t log n, n1−1/d)), where t the minimum crossing
number of any spanning tree of P .
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Problem 21: Shortest Paths among Obstacles in
2D

Statement Can shortest paths among h obstacles in the plane, with a total of
n vertices, be found in optimal O(n+ h log h) time using O(n) space?

Origin Uncertain, pending investigation.

29

http://valis.cs.uiuc.edu/~sariel/papers/09/crossing/
http://valis.cs.uiuc.edu/~sariel/papers/09/crossing/


Status/Conjectures Open.

Partial and Related Results The only algorithm that is linear in n in time
and space is quadratic in h [KMM97]; O(n log n) time, using O(n log n)
space, is known [HS99]. In three dimensions, the Euclidean shortest path
problem among general obstacles is NP-hard, but its complexity remains
open for some special cases, such as when the obstacles are disjoint unit
spheres or axis-aligned boxes; see [Mit00] for a survey.
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Problem 22: Minimum-Link Path in 2D

Statement Can a minimum-link path among polygonal obstacles be found in
subquadratic time?

Origin Mitchell [?].

Status/Conjectures Open.

Partial and Related Results The best algorithm known requires essentially
quadratic time in the worst case [MRW92].

Related Open Problems What is the complexity of computing minimum-
link paths in three dimensions?
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Problem 23: Vertex π-Floodlights

Statement How many π-floodlights are always sufficient to illuminate any
polygon of n vertices, with at most one floodlight placed at each vertex?
An α-floodlight is a light of aperture α. (We consider here “inward-facing”
floodlights, whose defining halfspace lies inside the polygon, locally in the
neighborhood of the vertex. Other models of the problem allow general
orientations of floodlights or restricted orientations (e.g., “edge-aligned”).)

Origin Jorge Urrutia, perhaps first published in [Urr00].

Status/Conjectures Open. Now known that the fraction of n that always
suffices lies between 5/8 and 2/3.

Partial and Related Results It was established in [ECOUX95] that for any
α < π, there is a polygon that cannot be illuminated with an α-floodlight
at each vertex. When α = π, n − 2 lights (trivially) suffice. So it is
of interest (as noted in [Urr00]) to learn whether a fraction of n lights
suffice for π-floodlights. A (very) special case is that ⌈n/2⌉ − 1 is a tight
bound for “monotone mountains” [O’R97]. Tóth established [Tót01a] that
(roughly) (3/4)n suffice, in the case of general orientation floodlights (not
necessarily inward-facing). A lower bound of Santos, that ⌊3(n − 1)/5⌋
inward-facing floodlights are necessary (or ⌊2(n− 2)/5⌋ generally oriented
floodlights), stood for several years, but just recently (Jan. 2002) Urrutia
constructed examples, based on stitching together copies of Fig. 1, that
show that 5(k + 1)/(8k + 9) (inward-facing) floodlights are necessary for
each k, thus improving the lower bound factor from 0.6 to 0.625. Also,
Speckmann and Tóth [ST01b] showed that ⌊n/2⌋ vertex π-floodlights suf-
fice for general orientations, while ⌊(2n − c)/3⌋ suffice for inward-facing,
edge-aligned orientations, where c is the number of convex vertices. In
particular, this reduced the upper-bound fraction below 1.
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Figure 1: A polygon of 9 vertices that needs 5 vertex π-lights.
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Problem 24: Polygonal Curve Simplification

Statement Can an n-vertex polygonal curve be simplified in time nearly linear
in n?

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Partial and Related Results The goal is to compute a simplification that
uses the fewest vertices of the original curve while approximating it accord-
ing to some prescribed error criterion. Quadratic-time algorithms have
been known for some time [CC96] and a recent algorithm achieves time
O(n4/3+ϵ) for a certain error criterion [AV00]. In practice, the Douglas-
Peucker algorithm is often used as a heuristic; it can be implemented to
run in time O(n log n) [HS94].
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Problem 25: Polyhedral Surface Approximation

Statement How efficiently can one compute a polyhedral surface that is an
ϵ-approximation of a given triangulated surface in R3?

Origin Mitchell [?]

Status/Conjectures Open.
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Partial and Related Results It is NP-hard to obtain the minimum-facet
surface separating two nested convex polytopes [DG97], if they are allowed
to have distinct structures; the complexity is open when one polytope is
an offset of the other (e.g., if they arise as offsets of an underlying convex
polytope that we seek to approximate). Polynomial-time approximation
algorithms are known ([BG95, MS95, AS98]) for the case of nested convex
polyhedra, and for separating two terrain surfaces, achieving factors within
O(1) or O(log n) of optimal. However, no polynomial-time approximation
results are known for general surfaces.
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Problem 26: Surface Reconstruction

Statement Given a sufficiently dense sample of points on a surface (technically,
an ϵ-sample), reconstruct a surface homeomorphic to the original.

Origin Amenta and Bern [?]

Status/Conjectures Open.

Partial and Related Results This has recently been accomplished for smooth
surfaces [ACDL00], but remains open for surfaces with sharp edges and
corners.
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Problem 27: Hexahedral Meshing

Statement Can the interior of every simply connected polyhedron whose sur-
face is meshed by an even number of quadrilaterals be partitioned into a
hexahedral mesh compatible with the surface meshing? [BEA+99]

Origin Uncertain. Scott Mitchell in [Mit96]?

Status/Conjectures Partially closed, Fall 2006.

Partial and Related Results It was known that a topological hexahedral
mesh exists [Mit96, Epp96], with, in general, curved boundaries, but de-
spite the availability of software that extends quadrilateral surface meshes
to hexahedral volume meshes, it is not known if a “geometric” hexahedral
mesh can be achieved, with all cells having planar faces.

A new result [CS06] settles the practical aspects of the problem, but leaves
one question unresolved. This paper provides an explicit algorithm that
extends a quadrilateral surface mesh to a hexahedral mesh, where all the
hexahedra have straight segment edges. In a sense, these hexahedra are
intermediate between the topological and geometric meshes mentioned
above. The faces are not necessarily planar, but this is not a crucial
aspect in applications, such a fluid dynamics simulations.

The question of whether a hexahedral mesh with planar faces exists re-
mains open.

Related Open Problems See [BE01] for extension of the flipping operation
described in Problem 1 to quadrilateral and hexahedral meshes.
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Problem 28: Flip Graph Connectivity in 3D

Statement Is the flip graph connected for general-position points in R3? Given
a set of n points in R3, the flip graph has a node for each tetrahedraliza-
tion of the set. Two nodes are connected by an arc if there is a 2-to-3
or 3-to-2 “bistellar flip” of tetrahedra between the two simplicial com-
plexes. In the plane, the flips correspond to convex quadrilateral diagonal
switches; in R3, a 5-vertex convex polyhedron is “flipped” between two of
its tetrahedralizations.

Origin [EPW90, Joe91]
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Status/Conjectures Open.

Partial and Related Results In R2 the flip graph is connected, providing
a basis for algorithms to iterate toward the Delaunay triangulation. A
decade ago, several [EPW90, Joe91] asked whether the same holds in R3

(when no four points are coplanar), but the question remains unresolved.
It is not even known whether the flip graph might contain an isolated node.
Settled in the negative for points in R5 by Santos [San00], by constructing
polytopes with a space of triangulations not connected via bistellar flips.
Settled in the negative for topological tetrahedralizations in 3D, but the
constructed tetrahedralization cannot be realized geometrically [DFM04].

Settled in the positive for flip graphs of regular triangulations in any
dimension in [PL07], based on earlier work of Gelfand, Kapranov and
Zelevinsky. The result in [PL07] connects by flips that neither remove nor
add vertices (i.e., 2-to-3 or 3-to-2 flips in 3D), whereas the earlier work by
Gelfand et al. permits all flips (e.g., 1-to-4 and 4-to-1 flips in 3D).

Related Open Problems Problem 1

Appearances [MO01]
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Problem 29: Hamiltonian Tetrahedralizations

Statement Can every convex polytope in R3 be partitioned into tetrahedra
such that the dual graph has a Hamiltonian path?

Origin [AHMS96].

Status/Conjectures Open.

Partial and Related Results Every convex polygon has such a Hamiltonian
triangulation, but not every nonconvex polygon does [AHMS96]. The
existence of a Hamiltonian path permits faster rendering on a graphics
screen via pipelining.

Chin, Ding, and Wang [CDW05] have shown that examples exist for which
the pulling tetrahedralization of a convex polytope is not Hamiltonian. (A
pulling tetrahedralization is obtained by joining one vertex (the apex) to
all other vertices of the polytope.) It is open if the shelling tetrahedral-
ization may be always Hamiltonian.

Escalona et al. [EFMU07] prove the conjecture up to n = 20: every points
set of n ≤ 20 points admits a Hamiltonian Tetrahedralization. They
also detail an algorithm that finds a Hamiltonian Tetrahedralization for
n points by adding O(n) Steiner points. The algorithm runs in O(n3/2)
time.
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Problem 30: Thrackles

Statement What is the maximum number of edges in a thrackle? A thrackle is
a planar drawing of a graph of n vertices by edges which are smooth curves
between vertices, with the condition that each pair of edges intersect at
exactly one point, and have distinct tangents there. Another phrasing is
that nonincident edges cross exactly once, and no incident edges share an
interior point.

Origin Conway, late 1960’s.

Status/Conjectures Open. Conway’s conjecture is that the number edges
cannot exceed n.

Partial and Related Results The upper bound was lowered from O(n3/2)
to 2n − 3 in [LPS95], and further lowered to (3/2)(n − 1) in [CN00].
The conjecture has long been known to be true for straight-line thrackles.
The conjecture was extended in [CN00] to the claim that a thrackle on
n vertices embedded on a surface of genus g has at most n + 2g edges.
See [BMP05, Sec. 9.5] for a recent discussion and further references.

Reward Conway offers a reward of $1,000 for a resolution.
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Problem 31: Trapping Light Rays with Segment
Mirrors

Statement Is it possible to trap all the light from one point source by a finite
collection of two-sided disjoint segment mirrors? A light ray is trapped if
it includes no point strictly exterior to the convex hull of the mirrors. The
source point is disjoint from the mirrors. Although several versions of the
problem are possible, it seems to make the most sense to treat the mirrors
as open segments (i.e., not including their endpoints), but demand that
they are disjoint as closed segments.

Origin O’Rourke and Petrovici [OP01]. The question seems natural enough to
have been raised earlier, but no other source is known.

Status/Conjectures Conjecture 9 from that paper: “No collection of segment
mirrors can trap all the light from one source.”

Partial and Related Results In [OP01] several other conjectures are formed
that imply a resolution to the posed problem. The strongest—that no col-
lection of mirrors as above can support even a single nonperiodic ray, i.e.,
one that reflects forever (so is trapped) but never rejoins its earlier path—
was disproved by Ben Stephens in 2002, who designed a contruction of 8
mirrors that traps a ray reflecting nonperiodically. A similar construction
was discovered and described in [MSZ09], which also established that any
finite number of rays can be trapped nonperiodically. Milovich [Mil04]
proved that if the angles between the lines containing the mirrors are ra-
tional multiples of π, then all but a countable number of light rays escape.
In his book on billiards, Tabachnikov says, “It is unknown whether one
can construct a polygonal trap for a parallel beam of light” [Tab05, p. 116].
This is in contrast to known nonpolygonal traps for such beams.

Related Open Problems Pach’s “enchanted forest” of circular mirrors.

Appearances Presented at the Open Problem session of the 13th Canad.
Conf. Comput. Geom., Waterloo, Ontario, Aug. 2001. Also, Ober-
wolfach, Jan. 2009.

40

http://www.thrackle.org/thrackle.html
http://www.thrackle.org/thrackle.html


Categories visibility

Entry Revision History J. O’Rourke, 28 Aug. 2001; 24 Feb. 2003; 5 Oct.
2005; 7 Sep. 2009.

References

[Mil04] David Milovich. Trapping light with mirrors. MIT Undergrad. J.
Math., 6:153–180, 2004.

[MSZ09] Zachary Mitchell, Gregory Simon, and Xueying Zhao. Trapping
light rays aperiodically with mirrors. Unpublished manuscript,
August 2009.

[OP01] Joseph O’Rourke and Octavia Petrovici. Narrowing light rays
with mirrors. In Proc. 13th Canad. Conf. Comput. Geom., pages
137–140, 2001.

[Tab05] Serge Tabachnikov. Geometry and Billiards, volume 30 of Mathe-
matics Advanced Study Semesters. American Mathematical Soci-
ety, 2005.

Problem 32: Bar-Magnet Polyhedra

Statement Which polyhedra are bar-magnet polyhedra? For reasons detailed
below, the problem can be phrased as asking which 3-connected planar
graphs may have their edges directed so that the directions “alternate”
around each vertex.

Let P be a polyhedron with a set of edges E. For an edge e ∈ E, define a
bar magnet as a mapping of e to either (N,S) or (S,N), which assigns the
endpoints of e opposite poles of a magnet (and corresponds to directing the
edge). Call a vertex v of P to be alternating under mappings of its edges to
bar magnets if the incident edges assigns alternating magnetic poles to v
in the cyclic order of those edges on the surface around v: (N,S,N, S, ...).
Thus if deg(v) is even, the poles alternate, and if deg(v) is odd, at most two
like poles are adjacent in the circular sequence. Finally, call a polyhedron
a bar-magnet polyhedron if there is a bar-magnet assignment of each of its
edges so that each of its vertices is alternating.

Origin Joseph O’Rourke, 2001. This problem is inspired by the toy “Roger’s
Connection,” which provides bar magnets and steel balls to construct poly-
hedra. The structures are most stable when each vertex is alternating.

Status/Conjectures Settled by Bojan Mohar, Apr. 2004.
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Partial and Related Results At the presentation of the problem, Therese
Biedl proved that the polyhedron formed by gluing together two tetrahe-
dra with congruent bases is not a bar-magnet polyhedron: alternation at
the three degree-4 vertices of the common base forces some other edge to
be directed both ways. Thus not all polyhedra are bar-magnet polyhe-
dra. Erik Demaine proved that a polyhedron all of whose vertices have
even degree is a bar-magnet polyhedron: the graph has a face 2-coloring,
and the edges of the faces of color 1 can oriented counterclockwise, which
then orients each face of color 2 clockwise. He also observed that if every
vertex is of degree 3, Petersen’s theorem yields a perfect matching that
establishes such “simple” polyhedra are bar-magnet polyhedra.

A clean characterization was provided by Bojan Mohar, who proved [Moh04]:

Theorem 1 Let G be a planar graph embedded on the surface of a sphere.
Define a new graph R whose nodes are the vertices of odd degree in G, with
two nodes of R adjacent if they are cofacial in G (lie on a common facial
walk). Then G has an NS-orientation (i.e., is a bar-magnet polyhedral
skeleton) if and only if R has a perfect matching.

A facial walk is a closed walk along the boundary of a face.

Appearances Posed by J. O’Rourke at the CCCG 2001 open-problem session
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Problem 33: Sum of Square Roots

Statement What is the minimum nonzero difference between two sums of
square roots of integers? More precisely, find tight upper and lower bounds
on r(n, k), the minimum positive value of∣∣∣∣∣

k∑
i=1

√
ai −

k∑
i=1

√
bi

∣∣∣∣∣
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where ai and bi are integers no larger than n. Bounds should be expressed
as a function of n and k. Examples:

r(20, 2) ≈ .0002 =
√
10 +

√
11−

√
5−

√
18

r(20, 3) ≈ .000005 =
√
5 +

√
6 +

√
18−

√
4−

√
12−

√
12

Origin Posed in [O’R81]. Perhaps older in other formulations.

Status/Conjectures Open, although some weak bounds are known.

Motivation Of particular importance is whether lg 1/r(n, k) is bounded above
by a polynomial in k and lg n. If this statement is true, then the sign of
a sum of square roots of integers can be computed in polynomial time.
If this statement is false, however, there still may be a polynomial-time
algorithm to compute the sign.

To quote David Eppstein: “A major bottleneck in proving NP-completeness
for geometric problems is a mismatch between the real-number and Turing
machine models of computation: one is good for geometric algorithms but
bad for reductions, and the other vice versa. Specifically, it is not known
on Turing machines how to quickly compare a sum of distances (square
roots of integers) with an integer or other similar sums, so even (decision
versions of) easy problems such as the minimum spanning tree are not
known to be in NP.”

Partial and Related Results Exponential upper bounds are known through
root-separation bounds [BFMS00, MS00]. Specifically, [MS00, BFMS00]
proves that − lg r(n, k) ≤ O(22k lg n). (More generally, [BFMS00, MS00]
give finite algorithms to compute the sign of algebraic expressions such
as sums of square roots, which are implemented and used in LEDA2 and
CORE3 for exact geometric computation.)

John A. Anderson (johnaa333@netzero.net) has an unpublished proof
(Aug 2003) of a similar bound:

r(n, k) ≥ [4k2n]1/2−22k−2

.

Cheng et al. [CMSC09] establish an upper bound on− lg r(n, k) of 2O(n/ lgn) lg n,
which improves on the above bound O(22k lgn) whenever n ≤ ck lg k for
some c.

At the other extreme, Qian and Wang [QW04, QW05] show an upper

bound on r(n, k) of O(n−2k+ 3
2 ). This upper bound on r(n, k) implies a

lower bound on lg 1/r(n, k), that is, on how many bits we need to compute
from the square roots to determine the sign of the difference. In particular,
it settles (positively) a question posed here by Erik Demaine (Nov. 2001):

2http://www.algorithmic-solutions.com/enleda.htm
3http://www.cs.nyu.edu/exact/core/
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can the number of bits required to distinguish the difference from zero
ever exceed the total number of bits in the input integers?

A slight variation on the problem is to ask (e.g., for k = 2), how close
can

√
a+

√
b be to an integer; Dana Angluin and Sarah Eisenstat [AE04]

proved a bound of Θ(1/n3/2) on this integrality gap.

Related, [Blö91] gives a polynomial-time Monte Carlo algorithm to decide
whether a sum of radicals is zero.
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Problem 34: Extending Pseudosegment Arrange-
ments by Subdivision

Statement How many intersections among an arrangement of pseudosegments
in the plane must be added as vertices to allow the pseudosegment arrang-
ment to be extended to a pseudoline arrangement?

An arrangement of pseudosegments in the plane is a family of finite-length
planar curves such that every two curves intersect in at most one point.
An arrangement of pseudolines in the plane is a family of planar curves
that extend to infinity on both ends such that every two curves intersect
in at most one point. Only some pseudosegment arrangements can be
extended to pseudoline arrangements. However, if we allow turning inter-
section points into vertices of the arrangement, thereby subdividing the
segments, then it is always possible to make a pseudosegment arrangement
extendible. The question is how many such vertices must be added in the
worst-case in terms of the number n of pseudosegments.

Origin Perhaps [Cha00a], [AACS98], or Boris Aronov?

Status/Conjectures Open.

Partial and Related Results Chan [Cha00a] has proved an upper bound of
O(n log n).

Appearances Posed by Boris Aronov during the open problem session at the
Fall Workshop on Computational Geometry, Brooklyn, NY, Nov. 2–3,
2001.

Categories combinatorial geometry

Entry Revision History E. Demaine, 20 Nov. 2001.
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2000.

Problem 35: Freeze-Tag: Optimal Strategies for
Awakening a Swarm of Robots

Statement An optimization problem that naturally arises in the study of
“swarm robotics” is to wake up a set of “asleep” robots, starting with
only one “awake” robot. One robot can only awaken another when they
are in the same location. As soon as a robot is awake, it may assist in
waking up other robots. The goal is to compute an optimal awakening
schedule such that all robots are awake by time t∗, for the smallest pos-
sible value of t∗ (the optimal makespan). The n robots are initially at n
points of a metric space. The problem is equivalent to finding a spanning
tree with maximum out-degree two that minimizes the radius from a fixed
source.

Is it NP-hard to determine an optimal awakening schedule for robots in the
Euclidean (or L1) plane? In more general metric spaces, can one obtain
an approximation algorithm with better than O(log n) performance ratio?

Origin [ABF+02]

Status/Conjectures [ABF+02] conjecture that the freeze-tag problem is NP-
hard in the Euclidean (or L1) plane. (They show it to be NP-complete in
star metrics.)

Motivation What is the most efficient way to “turn on” a large swarm of
robots or to distribute to them a secret or a token that requires close
proximity in order to pass from one to another?

Partial and Related Results There are a variety of related results given in
[ABF+02]. They show that the problem is NP-hard for “star metrics”
(each asleep robot is at a leaf of a star graph whose spokes have various
lengths). For geometric instances (Lp metrics) in fixed dimension, they
give an efficient PTAS. For general metric spaces, they give an O(log n)-
approximation algorithm. They also give improved approximation meth-
ods for other special cases (star graphs, ultrametrics)

Appearances Posed in [ABF+02], and by Joseph Mitchell during the open
problem session at the Fall Workshop on Computational Geometry, Brook-
lyn, NY, Nov. 2–3, 2001.

Categories optimization; scheduling; robotics

Entry Revision History E. Demaine, 20 Nov. 2001; J. Mitchell, 21 Nov.
2001.
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Problem 36: Inplace Convex Hull of a Simple
Polygonal Chain

Statement How much extra space is required to compute the convex hull of a
simple polygonal chain or simple polygon in linear time?

More precisely, given the n points in order along the chain in an array
A, the alogorithm must re-arrange the points inplace in the array and
output a number h so that the first h elements in the resulting array are
the points on the convex hull in order. The goal is to minimize the extra
storage past the array A, say to O(log n) or ideally O(1).

Origin [BIK+01]

Status/Conjectures Solved [BC04].

Partial and Related Results From the abstract of [BC04]: “we present a
simple self-contained solution that uses O(log n) space, and indicate how
to improve it to O(1) space with the same techniques used for stable
partition.”

Appearances Posed in [BIK+01], and by Hervé Brönnimann during the open
problem session at the Fall Workshop on Computational Geometry, Brook-
lyn, NY, Nov. 2–3, 2001.

Categories convex hulls

Entry Revision History E. Demaine, 21 Nov. 2001; J. O’Rourke, 10 Mar.
2004 (thanks to Ryan Coleman).
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Problem 37: Counting Polyominoes

Statement How many polyominoes on n squares are there? A polyomino is a
connected interior-disjoint union of axis-aligned unit squares joined edge-
to-edge, in other words, an edge-connected union of cells in the planar
square lattice. The order of a polyomino is the number of unit squares
forming it. The problem asks for the number of polyominoes of order
n. The key constraint here is that polyominoes must be edge-connected.
There are three variations on the problem, depending on whether two
polyominoes are considered equivalent by factoring out just translations
(fixed polyominoes), rotations and translations (chiral polyominoes), or
reflections, rotations, and translations (free polyominoes).

Origin To quote Klarner [Kla97]: “Polyominoes have a long history, going back
to the start of the 20th century, but they were popularized in the present
era initially by Solomon Golomb, then by Martin Gardner in his Scientific
American columns.”

Status/Conjectures Open.

Partial and Related Results Asymptotically, results of Klarner et al. [Kla97,
Thm. 12.3.1] show that the number of fixed n-ominoes (factoring out just
translations), denoted t(n), satisfies

lim
n→∞

[t(n)]1/n = λ

(roughly, t(n) is around nλ) for “Klarner’s constant” λ, with 4.0025 <
λ < 4.5685, but the precise value of λ remains open. The lower bound of
> 4 is established in [BRS16], and the upper bound in [BB15].

The exact counts have been computed for small n. See [Sloa] for the
number of fixed n-ominoes for n ≤ 28 and for related references. The
current record is n = 56 by Jensen [Jen03]. See also [Epp] for related
links.

Related Open Problems There are many related problems involving poly-
ominoes with restricted geometric shapes (e.g., [Slob]), polyiamonds (edge-
to-edge unions of unit equilateral triangles), polyhexes (edge-to-edge unions
of unit regular hexagons), polyabolos (edge-to-edge unions of unit right
isosceles triangles), polycubes (face-to-face unions of unit cubes), etc. All
of these problems are also open.

Appearances [Kla97]
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Categories combinatorial geometry

Entry Revision History E. Demaine & J. O’Rourke, 30Nov2001; E. De-
maine, 28Aug2002; G. Barequet, 4Dec2015.
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Problem 38: Compatible Triangulations

Statement Is it true that every two sets of n planar points in general posi-
tion with the same number points on their convex hulls have compatible
triangulations? Two triangulations are compatible if they have the same
combinatorial structure, i.e., if their face lattices are isomorphic. For com-
patible triangulations T1 and T2 of point sets S1 and S2, there is a bijection
ϕ between the points such that ijk is a triangle of T1 empty of points of
S1 iff ϕ(i)ϕ(j)ϕ(k) is a triangle of T2 empty of points of S2.

Origin [AAK01] and [AAHK02].

Status/Conjectures Open. Conjectured in [AAHK02] to be true.

Motivation Morphing.
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Partial and Related Results The answer to the question posed is some-
times no for points not in general position. If the bijection between the
points is given and fixed, then compatible triangulations do not always
exist [Saa87]. When the bijection is not given, the conjecture is proven
only for point sets with at most three points interior to the hull [AAHK02].
Compatible triangulations can always be achieved by the addition of at
most a linear number of Steiner points.

Categories triangulations

Entry Revision History J. O’Rourke, 1 Jan. 2002.
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Problem 39: Distances among Point Sets in R2

and R3

Statement For a point set P in Rd, let fd(P ) be the number of unit-distance
point pairs:

fd(P ) = |{(u, v) | u, v ∈ P, ∥u− v∥ = 1}| ;

and let fd(n) be the maximum over all sets of n points:

fd(n) = max
|P |=n

fd(P ) .

Further, let gd(P ) denote the number of distinct distances induced by a
set of points P :

gd(P ) = |{∥u− v∥ | u, v ∈ P}| ;

and let gd(n) be the minimum over all sets of n points:

gd(n) = min
|P |=n

gd(P ) .
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Give upper and lower bounds on fd(n) and gd(n), particularly for d = 2
and d = 3.

Origin Paul Erdős [Erd46].

Status/Conjectures Open.

Partial and Related Results f2(n) = O(n4/3) [Szé97, CEG+90, SST84],
and f2(n) = Ω(n1+c/ log logn) [Erd46]. f3(n) = O(n5/3) and f3(n) =
Ω(n4/3 log log n) [Erd60]. For g2(n), the best result is that g2(n) = Ω(n6/7) [ST01a].
Erdős conjectured that the correct answer here is n/

√
log n; this bound is

achieved on the grid.

Reward Erdős offered $500 to settle whether f2(n) < cn1+ϵ for some c > 0 and
for each ϵ > 0, and $500 to settle whether g2(n) = [1 + o(1)]cn/

√
log n.

Appearances [CFG90, pp. 150-1].

Categories combinatorial geometry

Entry Revision History S. Venkatasubramanian, 12 Feb. 2002.
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Problem 40: The Number of Pointed Pseudotri-
angulations

Statement For a planar point set S, is the number of pointed pseudotriangu-
lations always at least the number of triangulations?

A pseudotriangle is a planar polygon with exactly three convex vertices.
Each pair of convex vertices is connected by a reflex chain, which may be
just one segment. (Thus, a triangle is a pseudotriangle.) A pseudotriangu-
lation of a set S of n points in the plane is a partition of the convex hull of
S into pseudotriangles using S as a vertex set. A minimum pseudotrian-
gulation, or pointed pseudotriangulation, has the fewest possible number
of edges for a given set S of points.

See [Str00, KKM+03, O’R02a] for examples, explanation of the term
“pointed,” and further details.

Origin [RRSS01].

Status/Conjectures Open. Conjectured to be true, with equality only when
the points of S are in convex position.

Partial and Related Results The conjecture has been established for all sets
of at most 10 points: ≤ 9 by [BKPS01], and 10 by Oswin Aichholzer
[personal communication, 28 Mar. 2002]. Aichholzer et al. [AAKS02]
establish that the number of pointed pseudotriangulations on n points is
minimized when the points are in convex position.

Appearances Posed by Jack Snoeyink at the CCCG 2001 open-problem ses-
sion [DO02].

Categories triangulations; combinatorial geometry

Entry Revision History J. O’Rourke, 20 Mar. 2002; 28 Mar. 2002; E. De-
maine, 7 Aug. 2002; 31 Aug. 2002.
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Problem 41: Sorting X + Y (Pairwise Sums)

Statement Given two sets of numbers, each of size n, how quickly can the set
of all pairwise sums be sorted? In symbols, given two sets X and Y , our
goal is to sort the set

X + Y = {x+ y | x ∈ X, y ∈ Y }.

Origin The earliest known reference is Fredman [Fre76], who attributes the
problem to Elwyn Berlekamp.

Status/Conjectures Open.

Motivation This is a simple special case of the more general question of sort-
ing with partial information: How many comparisons are required to sort
if a partial order on the input set is already known? Hernández Barrera
[Her96] and Barequet and Har-Peled [BHP01] describe several geomet-
ric problems that are “Sorting-(X + Y )-hard”. Specifically, there is a
subquadratic-time transformation from sorting X + Y to each of the fol-
lowing problems: computing the Minkowski sum of two orthogonal-convex
polygons, determining whether one monotone polygon can be translated
to fit inside another, determining whether one convex polygon can be
rotated to fit inside another, sorting the vertices of a line arrangement,
or sorting the interpoint distances between n points in Rd. (Although
Barequet and Har-Peled [BHP01] claim only that the problems they con-
sider are 3SUM-hard, their proofs immediately imply this stronger result.)
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Fredman also mentions an immediate application to multiplying sparse
polynomials [Fre76].

Partial and Related Results The obvious O(n2 log n)-time algorithm is also
the fastest known. There are Ω(n2) lower bounds for this problem in
various restrictions of the linear decision tree model of computation [Fre76,
Die89, Eri99a]. The main problem is whether the logarithmic factor can
be removed.

Fredman [Fre76] proved that if a given partial order on m elements has
L linear extensions, then the set can be sorted in at most log2 L + 2m
comparisons. For the sorting X + Y problem, we have m = n2, the Hasse
diagram of the partial order is an n×n diagonal grid, and simple arguments
about hyperplane arrangements imply that L = O(n8n). Thus, Fredman’s
algorithm can sort X +Y using only 8n log n+2n2 comparisons; unfortu-
nately, the algorithm needs exponential time to choose which comparisons
to perform! This exponential overhead was reduced to polynomial time by
Kahn and Kim [KK95] and then to O(n2 log n) by Lambert [Lam92] and
Steiger and Streinu [SS95]. These results imply that no superquadratic
lower bound is possible in the full linear decision tree model.

If the input consists of n integers between −M and M , an algorithm
of Seidel based on fast Fourier transforms runs in O(n + M logM) time
[Eri99a]. The Ω(n2) lower bounds require exponentially large integers.

A closely related problem does have a subquadratic solution: find a min-
imum element of X + Y , the so-called min-convolution problem, posed
by Jeff Erickson [DO06]. See [BCD+06] for the result and a discussion of
connections to the sorting problem.

Related Open Problems The decision version of this problem—does the set
X+Y have n2 unique elements?—is 3SUM-hard [BHP01]; see Problem 1.

Categories lower bounds

Entry Revision History E. Demaine, 6 June 2002; Jeff Erickson, 20 June
2002; J. O’Rourke, 20 Aug. 2006.
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Problem 42: Vertex-Unfolding Polyhedra

Statement Consider a polyhedron with simply connected facets (no holes on a
facet) and without boundary (every edge is incident to exactly two facets).
Can the polyhedron be cut along potentially all of its edges, but leaving
certain faces connected at vertices, and unfolded into one piece in the
plane without overlap? Such an unfolding is called a vertex-unfolding,
to distinguish from widely studied edge-unfoldings (see Problem 1) and
general unfoldings. An important subproblem here is whether all convex
polyhedra have vertex-unfoldings; a negative answer would also resolve
Problem 1.

Origin [DEE+02]

Status/Conjectures Open.

Partial and Related Results All simplicial polyhedra have vertex-unfoldings
[DEE+02]. These vertex-unfoldings have a special structure called a “facet
path” which does not exist in general, even for convex polyhedra [DEE+02].

Related Open Problems Problem 1: Edge-Unfolding Convex Polyhedra.
Problem 1: General Unfolding of Nonconvex Polyhedra.
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Appearances Originally posed in [DEE+02]. Posed by E. Demaine at the
CCCG 2001 open-problem session [DO02].

Categories folding and unfolding; polyhedra
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Problem 43: General Unfoldings of Nonconvex
Polyhedra

Statement Can every closed polyhedron be cut along its surface and unfolded
into one piece in the plane without overlap? Such an unfolding is called a
general unfolding to distinguish from edge-unfoldings (see Problem 1) and
vertex-unfoldings (see Problem 1).

Origin Perhaps [BDE+03].

Status/Conjectures Open.

Partial and Related Results It is known that every convex polyhedron has
a general unfolding. In fact, there are three general methods for unfold-
ing convex polyhedra: the star unfolding [AO91, AAOS97], the source
unfolding [MMP87], and unfolding via quasigeodesics [IOV07].

On the nonconvex side, Bern et al. [BDE+03] show a general unfolding for
a nonconvex simplicial polyhedron (whose faces are all triangles) that has
no edge unfolding, establishing that general unfoldings are more powerful
than edge unfoldings. (This was known earlier [BDD+98] but with an
example using nonconvex faces.)

It is now known that all orthogonal polyhedra (those with all edges par-
allel to coordinate axes) have a general unfolding [DFO07], although the
resulting single piece can be exponentially thin and long. See [O’R08] for
a survey of progress on orthogonal polyhedra.
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Related Open Problems Problem 1: Edge-Unfolding Convex Polyhedra.
Problem 1: Vertex-Unfolding Polyhedra.

Appearances [BDE+03], [DO07, Open Prob. 22.3].

Categories folding and unfolding; polyhedra
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Problem 44: 3-Colorability of Arrangements of
Great Circles

Statement Is every zonohedron face 3-colorable when viewed as a planar map?
An equivalent question, under a different guise, is the following: is the
arrangement graph of great circles on the sphere always vertex 3-colorable?
(The arrangement graph has a vertex for each intersection point, and an
edge for each arc directly connecting two intersection points.) Assume
that no three circles meet at a point, so that this arrangement graph is
4-regular.

Origin The zonohedron-face version is due to Stan Wagon, deriving from the
work in [SW00]. The origin of the arrangement guise of the problem
is [FHNS00].

Status/Conjectures Open.

Partial and Related Results Arrangement graphs of circles in the plane, or
general circles on the sphere, can require four colors [Koe90]. The key
property in this problem is that the circles must be great. All arrangement
graphs of up to 11 great circles have been verified to be 3-colorable by
Oswin Aichholzer (August, 2002). See [Wag02] for more details.

Appearances Posed by Stan Wagon at the CCCG 2002 open-problem session.

Categories arrangements; coloring; polyhedra

Entry Revision History E. Demaine & J. O’Rourke, 28 Aug. 2002.
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Problem 45: Smallest Universal Set of Points for
Planar Graphs

Statement How many points must be placed in the plane to support planar
drawing of all planar graphs on n vertices? More precisely, call a set of
points universal if every planar graph on n vertices can be drawn with
straight-line edges and without crossings by placing the vertices on a sub-
set of the points. What is the smallest universal set of points as a function
of n? In particular, is it O(n)?

Origin Attributed to Mohar by János Pach (23 Nov. 2002). See also [CH89]
for some of the history.

Status/Conjectures Open. Between Θ(n) and Θ(n2).

Partial and Related Results By definition, a universal set of points must
have size at least n. Chrobak and Karloff [CH89] proved the stronger
result that any universal set of points must have at least 1.098n points.

On the other side, it is well-known that there are universal sets of points
of size O(n2). In particular, every planar graph can be drawn on the
O(n)×O(n) square grid [dFPP90, Sch90]. However, any universal set of
points forming a grid must have size at least n/3× n/3 [CH89].

Stephen Kobourov asks for the smallest value of n for which a universal
point set of size n does not exist. He has checked by exhaustive search
that there is a universal point set of size n for all n ≤ 14.

It is now known that there is a universal set of n points if one bend per
edge is permitted [ELLW10].

Appearances Posed by Stephen Koborouv during an open-problem session at
the DIMACS Workshop on Computational Geometry (12th Annual Fall
Workshop on Computational Geometry), Nov. 2002.

Categories graphs; point sets; graph drawing

Entry Revision History E. Demaine, 23 Nov. 2002; 20 Sep. 2003 (thanks to
Sergio Cabello); J. O’Rourke, 29 Mar 2010 (thanks to Michael Hoffmann).
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Problem 46: 3DMinimum-Bend Orthogonal Graph
Drawings

Statement Does every simple graph with maximum vertex degree ∆ ≤ 6 have
a 3D orthogonal point-drawing with no more than two bends per edge?
A 3D orthogonal point-drawing of a graph maps each vertex to a unique
point of the 3D cubic lattice, and maps each edge to a lattice path between
the endpoints; these paths can only intersect at common endpoints. In
this problem, each path must have at most two bends, that is, consist of
at most three orthogonal line segments (links).

Origin Likely [ESW00].

Status/Conjectures Open.

Partial and Related Results Two bends would be best possible, because
any drawing of K5 uses at least two bends on at least one edge. If ∆ ≤ 5,
two bends per edge suffice [Woo03]. Two bends also suffice for the com-
plete multipartite 6-regular graphs K7, K2,2,2,2, K3,3,3, and K6,6 [Woo00].
In general, there is a drawing with an average number of bends per edge of
at most 2 + 2

7 [Woo03]. Additionally, three bends per edge always suffice,
even for multigraphs [ESW00, PT99, Woo01].

Two-dimensional versions of this problem have also been studied. A 2D
orthogonal point-drawing of a graph maps each vertex to a unique point
of the 2D square lattice, and maps each edge to a lattice path between the
endpoints; the paths are allowed to intersect at common endpoints and at
proper crossings (points at which two paths meet but do not bend), but
must be edge-disjoint. Every graph with maximum vertex degree ∆ ≤ 4
has a 2D orthogonal point-drawing with at most two bends per edge, and
furthermore within a 2n× 2n rectangle of the grid [Sch95]. On the other
hand, as in 3D, any drawing of K5 uses at least two bends on at least one
edge [Sch95], so two bends is again best possible. For planar graphs, we can
ask for 2D orthogonal point-drawings that have no (proper) crossings. In
this case, again there are drawings with at most two bends per edge, unless
the graph has a connected component isomorphic to the icosohedron, in
which case three bends per edge is the best possible [BK98, LMS98].

Appearances [ESW00]. Posed by David Wood at the CCCG 2002 open-
problem session [DO03b].

Categories graph drawing
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Problem 47: Hinged Dissections

Statement Does every pair of equal-area polygons have a hinged dissection?
A dissection of one polygon A to another B is a partition of A into a finite
number of pieces that may be reassembled to form B. A hinged dissection
is a dissection where the pieces are hinged at vertices and the reassembling
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is achieved by rotating the pieces about their hinges in the plane of the
polygons.

Origin [DDE+03], [Fre02, p. 3].

Status/Conjectures Now settled: Hinged dissections exist [AAC+08]. Up-
date to this entry soon.

Partial and Related Results There are two main partial results. First, any
two polyominoes of the same area have a hinged dissection [DDE+03].
A polyomino is a polygon formed by joining unit squares at their edges;
see [Kla97] and Problem 1. The polyomino result generalizes to hinged
dissections of all edge-to-corresponding-edge gluings of congruent copies
of any polygon. Second, any asymmetric polygon has a hinged dissection
to its mirror image [Epp01]. Both of these results interpret the problem
as ignoring possible intersections between the pieces as they hinge, fol-
lowing what Frederickson calls the “wobbly-hinged” model. This freedom
may not be necessary, although this seems not to be established in the
literature.

Many specific examples of hinged dissections can be found in [Fre02].

Appearances [O’R02b].

Categories polygons
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2009.
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Problem 48: Bounded-Degree Minimum Euclidean
Spanning Tree

Statement What is the complexity of finding a bounded-degree spanning tree
for a planar point set, such that the total Euclidean length τk is as small
as possible, subject to the constraint that no node has more than k = 4
edges incident to it?

Origin Papadimitriou and Vazirani [PV84] conjectured the problem to be NP-
hard for k = 4.

Status/Conjectures Solved: Proved NP-hard in [FH09].

Motivation Natural generalization of finding a shortest geometric Hamiltonian
path; arises in network optimization

Partial and Related Results [PV84] proved the problem to be NP-hard for
k = 3. For k ≥ 5, the problem is polynomially solvable, as there always is
a minimum spanning tree with no point having degree more than 5.

Related Open Problems Various worst-case ratios of minimum weight bounded-
degree spanning trees for different degree bounds are still open, in partic-
ular comparing τk to the weight τ of a minimum spanning tree. [FKK+97]
conjecture τ3/τ ≤ 1.103..., τ4/τ ≤ 1.035... for Euclidean distances in the
plane, and τ4/τ ≤ 1.25 for Manhattan distances in the plane, and give
matching lower bounds.

[KRY96] show that for Euclidean distances, τ4/τ ≤ 1.25 and τ3/τ ≤ 1.5
in the plane, and τ3/τ ≤ 1.66... in arbitrary dimensions.

The first two of these bounds were improved to τ4/τ ≤ 1.143 and τ3/τ ≤
1.402 by [Cha03].

Now settled by NP-hard proof in [FH09].

Categories minimum spanning tree; optimization; point sets

Entry Revision History S. P. Fekete, 30 July 2003; J. O’Rourke, 29 Mar
2010 (thanks to Michael Hoffmann).
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Problem 49: Planar Euclidean Maximum TSP

Statement What is the complexity of finding a tour of maximum Euclidean
length for a planar point set?

Origin [Bar96] showed that there is a PTAS for the problem. No earlier men-
tion is known.

Status/Conjectures Open.

Motivation How does the complexity of a natural problem depend on the
geometry of distances?

Partial and Related Results [BJrW98] showed that a maximum length tour
can be found in polynomial time for polyhedral metrics in spaces of finite
dimension, i.e., for metrics for which the unit ball is a convex body with
f facets. The resulting complexity is O(nf−2 log n).

[Fek99] showed that the maximum TSP can be solved in time O(n) for
rectilinear distances in the plane, but is NP-hard for Euclidean distances
in three-dimensional space, or on the surface of a sphere. Conjectures the
case of planar Euclidean distances to be NP-hard.

More recent details and related problems can be found in [BFJ+03].

Related Open Problems The problem is not even known to be in NP. A
polynomial algorithm would require some understanding of problem 33
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(sum of square roots), at least for classes of instances arising from the
computation of tour length.

Also related is the Planar Euclidean maximum scatter TSP: What is the
complexity of finding a tour for a planar point set in ℜd, such that the
Euclidean length of the shortest edge is maximized? Stated in [ACM+97],
shown NP-hard in dimensions d ≥ 3 in [Fek99], open for d = 2. Also,
no bounds on approximation are known in a geometric context; the best
known aproximation algorithm from [ACM+97] achieves an approximation
factor of 2, but does not use geometry.

Appearances [Fek98], [BFJ+03]

Categories traveling salesman; optimization; point sets

Entry Revision History S.P. Fekete, 1 Aug. 2003.
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[Fek99] S. P. Fekete. Simplicity and hardness of the maximum traveling
salesman probl em under geometric distances. In Proc. 10th ACM-
SIAM Sympos. Discrete Algorithms, pages 337–345, 1999.

Problem 50: Pointed Spanning Trees in Triangu-
lations

Statement Does every triangulation of a set of points in the plane (in general
position) contain a pointed spanning tree as a subgraph? A vertex is
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pointed if one of its incident faces has an angle larger than π at this
vertex. A spanning tree is pointed if all of its vertices are pointed.

Origin Oswin Aichholzer, January 2003.

Status/Conjectures Settled negatively, January 2004.

Partial and Related Results Obviously true if a triangulation contains a
Hamiltonian path or a pointed pseudotriangulation as a subgraph. For
both structures there exist triangulations not containing them. (See, e.g.,
[O’R02a] for a discussion of pseudotriangulations.) Settled negatively by
Aichholzer et al. [AHK04] with a 124-point counterexample. A conse-
quence is that there are triangulations that require Ω(n) edge-flips to
contain a pointed spanning tree, or to become Hamiltonian.

Related Open Problems Problem 1.

Appearances Posed by Oswin Aichholzer at the CCCG 2003 open-problem
session, August 2003. Also posed by Bettina Speckmann as Problem 10
at the First Gremo Workshop on Open Problems in Stels, Switzerland,
July 2003.

Categories triangulations; planar graphs
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Problem 51: Linear-Volume 3D Grid Drawings of
Planar Graphs

Statement Does every n-vertex planar graph have a 3D grid drawing with
O(n) volume? A 3D grid drawing of a graph is a placement of the ver-
tices at distinct points with integer coordinates such that the straight line
segments representing the edges are pairwise non-crossing. The volume is
of the bounding box.

Origin Felsner, Liotta, and Wismath [FLW02].

Status/Conjectures Open.

66



Partial and Related Results 1. [FLW02]: Every n-vertex outerplanar graph
has a 3D grid drawing with O(n) volume.

2. [DW03b]: Every n-vertex graph with bounded treewidth has a 3D
grid drawing with O(n) volume.

3. [DW04]: Every n-vertex planar graph has a 3D grid drawing with
O(n3/2) volume.

4. [Woo02]: Every n-vertex planar graph has an O(1) × O(1) × O(n)
grid drawing if and only if planar graphs have O(1) queue-number.
(See Problem 1 for a definition of queue-number.)

Related Open Problems Problem 1.

Appearances Above references.

Categories graph drawing
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Problem 52: Queue-Number of Planar Graphs

Statement Does every planar graph have O(1) queue-number? A queue layout
of a graph consists of a linear order of the vertices and a partition of
the edges into non-nested queues. Edge xy is nested inside edge vw if
v < x < y < w in the linear order. The queue-number of a graph G is
the minimum number of queues in a queue layout of G. This question
amounts to asking whether every planar graph has a vertex ordering with
a constant number of pairwise nested edges (called a rainbow).

Origin Heath, Leighton, and Rosenberg [HLR92, HR92].

Status/Conjectures Open.

Partial and Related Results 1. [HLR92, HR92]: Every tree has queue-
number ≤ 1.

2. [HLR92, HR92]: Every outerplanar graph has queue-number ≤ 2.

3. [DW03b]: Every graph with bounded treewidth has bounded queue-
number.

4. [Woo02]: Planar graphs have O(1) queue-number if and only if every
n-vertex planar graph has a O(1)×O(1)×O(n) grid drawing.

5. [DW03a]: Planar graphs have O(1) queue-number if and only if
Hamiltonian bipartite planar graphs have O(1) bipartite thickness.
The bipartite thickness of a bipartite graph G is the minimum k such
that G can be drawn with the vertices on each side of the bipartition
along a line, with the two lines parallel, and with each edge assigned
to one of k “layers” so that no two edges in the same layer cross
(when drawn as straight line segments).

Related Open Problems Problem 1.

Appearances Above references.

Categories graph drawing
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Problem 53: Minimum-Turn Cycle Cover in Pla-
nar Grid Graphs

Statement What is the complexity of finding a cycle-cover of a planar grid
graph that has the fewest possible 90◦ turns? (An 180◦ U-turn counts as
two turns.) A planar grid graph is a graph whose vertices are any set of
points on the planar integer lattice and whose edges connect every pair of
vertices at unit distance.

Origin Aggarwal et al. [ACK+97] show that the more general problem of find-
ing a cycle cover for a planar set of points that minimizes total turn angle
is NP-hard. Arkin et al. [ABD+01, ABD+05] consider the problem in grid
graphs, but are only able to give approximations.

Status/Conjectures Solved: proved NP-hard by Fekete and Krupke [FK19]

Motivation Minimizing turns is a natural geometric measure; understanding
its algorithmic behavior is of general interest.

Partial and Related Results [ABD+01, ABD+05] show that the problem is
polynomially solvable when restricted to thin grid graphs, i.e., grid graphs
that do not contain an induced 2 × 2 square. For this special case, the
problem behaves somewhat similarly to a Chinese Postman Problem. The
problem of finding a minimum-turn tour is shown to be NP-complete, even
for this special case.

In 2019, Fekete and Krupke [FK19] established that finding a minimum-
turn cycle cover in a planar grid graph is NP-hard, thereby providing an
answer to this problem.

Related Open Problems Minimum-turn cycle cover in a “solid” (genus-zero)
grid graph: What is the complexity of finding a minimum-turn tour for a
given planar grid graph without holes?

69



TSP in a solid grid graph: What is the complexity of finding a minimum-
length tour for a given planar grid graph without holes? (Problem 1)

Appearances [ABD+01, ABD+05].

Categories traveling salesman; optimization; point sets; graphs
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Problem 54: Traveling Salesman Problem in Solid
Grid Graphs

Statement What is the complexity of finding a shortest tour in a solid planar
grid graph? A planar grid graph is a graph whose vertices are any set of
points on the planar integer lattice and whose edges connect every pair of
vertices at unit distance. Distances between nodes correspond to induced
shortest-path distances in the graph, which corresponds to “Manhattan”
distances. A grid graph is solid if it does not have any holes, i.e., its
complement in the planar integer lattice is connected.

Origin [IPS82] show that the problem is NP-complete in general planar grid
graphs.

Status/Conjectures Open.
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Motivation

Partial and Related Results [UL97] show that Hamiltonicity of a solid grid
graph can be decided in polynomial time. Thus we can decide whether
there is a tour of length equal to the number of vertices. In contrast,
deciding Hamiltonicity is NP-hard in general planar grid graphs [IPS82].

[ABD+01] observe that finding the shortest tour is polynomially solvable
when restricted to thin grid graphs, i.e., grid graphs that do not contain
an induced 2 × 2 square. This problem asks about replacing the thin
restriction with the solid restriction.

Related Open Problems Minimum-Turn Cycle Cover in Planar Grid Graphs
(Problem 1)

Appearances Mentioned in [ABD+01].

Categories traveling salesman; optimization; point sets; graphs

Entry Revision History S. P. Fekete, 20 Dec. 2003; E. Demaine, 16 May
2004.
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Problem 55: Pallet Loading

Statement What is the complexity of the pallet loading problem? Given two
pairs of numbers, (A,B) and (a, b), and a number n, decide whether n
small rectangles of size a × b, in either axis-parallel orientation, can be
packed into a large rectangle of size A×B.

This problem is not even known to be in NP, because of the compact input
description, and the possibly complicated structure of a packing, if there
is one.

Origin Uncertain, pending investigation.
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Status/Conjectures Open.

Motivation Natural packing problem; first-rate example of the relevance of
coding input and output.

Partial and Related Results Tarnowsky [Tar92] showed that the problem
can be solved in time polynomial in the size of the input if we are re-
stricted to “guillotine” patterns, i.e., arrangements of items that can be
obtained by a recursive sequence of edge-to-edge cuts. This result uses
some nontrivial algebraic methods.

Related Open Problems What is the complexity of packing a maximal num-
ber of unit squares in a simple polygon? (Problem 1)

Appearances [Dow87] claims the problem to be NP-hard; [Exe88] claims the
problem to be in NP; but both claims are erroneous. The precise nature
of the difficulty is stated in [Nel93].

Categories packing; optimization

Entry Revision History S. P. Fekete, 17 Jan. 2004.
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Problem 56: Packing Unit Squares in a Simple
Polygon

Statement What is the complexity of deciding whether a given number of
axis-parallel unit squares can be packed into a simple polygon (without
holes)?

Origin Unknown.

Status/Conjectures Open.
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Motivation Natural packing problem.

Partial and Related Results The problem is known to be NP-hard for poly-
gons with holes [FPT81], even if the polygon is an orthogonal polygon with
all coordinates being multiples of 1/2. Recently this version of the problem
was shown to be in NP [DEKIvO09], making it NP-complete.

The problem is the decision version for two optimization problems of very
different behavior. There is a PTAS for packing the maximum number of
squares of fixed size [HM85]. Maximizing the size of squares such that a
fixed number of squares can be packed has a lower bound on approximation
of 14/13, and there is a 3/2-approximation [BF01].

Related Open Problems What is the complexity of pallet loading? (Prob-
lem 1)

Appearances [BF01] conjecture the problem to be polynomially solvable.

Categories packing; optimization

Entry Revision History S. P. Fekete, 16 Jan. 2004; E. Demaine, 3 July 2009.
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Problem 57: Chromatic Number of the Plane

Statement How many colors are needed to paint the plane so that no two
points a unit distance apart are painted the same color? If the same
question is asked of the line, the answer is 2: Coloring [0, 1) red, [1, 2)
blue, etc., ensures that no two unit-separated points have the same color.
One can view the question as asking for the chromatic number χ(E2) of
the infinite unit-distance graph G, with every point in the plane a vertex,
and an edge between two vertices if they are separated by a unit distance.
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Origin Hadwider and Edward Nelson, 1944.

Status/Conjectures Open. Erdős and de Bruijn showed [EdB51] that the
chromatic number of the plane is attained for some finite subgraph of G.
This result led to narrowing the answer to 4 ≤ χ(E2) ≤ 7. For example,
the lower bound of 4 is established by the “Moser graph.”

The knowledge gap for the chromatic number of (3D) space is even wider
than for the plane: it is only known to satisfy 6 ≤ χ(E3) ≤ 15. See [Gra04a,
Gra04b] for further results and references.

There is now some evidence that the chromatic number of the plane
may depend on the axioms of set theory. This was first seen possible
in examples constructed by Saharon Shelah and Alexander Soifer. Now
Payne [Pay09] has constructed unit-distance graphs with the same prop-
erty.

Related Open Problems Problem 1.

Reward Ron Graham offers $1000 for a solution.

Appearances [O’R04]

Categories combinatorial geometry

Entry Revision History J. O’Rourke, 15 Aug. 2004; 6 July 2009.
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Problem 58: Monochromatic Triangles

Statement For any (planar) triangle T , is there is a 3-coloring of the (infinite)
plane with no monochromatic copy of T? We imagine congruent copies of
T moved around the plane via rigid motions, and seek a spot where T is
monochromatic. T is monochromatic if its three vertices are painted the
same color, by virtue of lying on points of the plane painted that color.
Note that the coloring in the question may depend on the given triangle
T .

Origin Ron Graham, MSRI, August 2003.

Status/Conjectures Open. Ron Graham conjectures that the answer is yes
for all triangles T .

Motivation The question of the chromatic number of the Euclidean plane E2

has been unresolved for over fifty years (Problem 1). This problem is an
interesting, much more restricted variant, posed by Ron Graham as part
of his “Geometric Ramsey Theory” investigation [Gra04a] [Gra04b] at his
MSRI lectures5 in August 2003.

Partial and Related Results See [O’R04] for further explanation.

Related Open Problems Problem 1.

Reward Ron Graham offers $50 for a solution.

Appearances [O’R04]

Categories combinatorial geometry

Entry Revision History J. O’Rourke, 15 Aug. 2004.
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Problem 59: Most Circular Partition of a Square

Statement What is the optimal partition of a square into convex pieces such
that the circularity of the pieces is optimized? The circularity of a polygon
is the ratio of the radius of its smallest circumscribing circle to the radius
of its largest inscribed circle. Thus circular pieces have circularity near
1, and noncircular pieces have circularity greater than 1. An optimal
partition minimizes the maximum ratio over all pieces in the partition.

Origin [DO03a]

Status/Conjectures Open.

Motivation This is a type of “fat” partition.

Partial and Related Results It is known from [DO03a] that the equilateral
triangle requires an infinite number of pieces to achieve the optimal cir-
cularity of 1.5, and that for all regular k-gons, for k ≥ 5, the one-piece
partition is optimal. The square is a difficult intermediate case. It is
known that the optimal ratio lies in the narrow interval [1.28868, 1.29950].
The upper bound is established by the 92-piece partition shown in Fig-
ure 2. It is conjectured in [DO03a] that, as with the equilateral triangle

Figure 2: 92-piece partition achieving 1.29950

case, no finite partition achieves the optimal ratio, but rather optimality
can be approached as closely as desired as the number of pieces goes to
infinity.

Categories packing; meshing

Entry Revision History J. O’Rourke, 16 Aug. 2004.
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Problem 60: Transforming Polygons via Vertex-
Centroid Moves

Statement Given an arbitrary polygon, transform it by a finite sequence of
“vertex-centroid” moves to a regular polygon. A vertex-centroid move is a
translation of a vertex v along the line vm, where m is the centroid of the
vertices of the polygon, i.e., 1/n-th of the sum of the vertex coordinates.
Vertices may move only one at a time, but in any order and any number
of times.

Origin Steve Gray, 2003.

Status/Conjectures Open.

Partial and Related Results Let v(t) and m(t) be the positions of the mov-
ing vertex and centroid as a function of time t, where t runs from 0 to 1
during the vertex translation. Let L be the line containing v(0)m(0). As
v(t) moves on L, m(t) remains on L.

For n = 3, a triangle can be made equilateral in two moves. Already for
n = 4 the situation is less clear.

One could set many other transformational goals besides achieving regu-
larity: scale the polygon by s > 0, rotate the polygon, etc. The notion
generalizes to arbitrary dimensions.

A more difficult variant would be to use the area centroid rather than the
vertex centroid, in which case m(t) does not remain on L, so that a vertex
move would have the flavor of pursuit of a moving target.

Appearances

Categories polygons

Entry Revision History J. O’Rourke, 1 Aug. 2005; S. Gray, 15 Aug. 2005.

Problem 61: Lines Tangent to Four Unit Balls

Statement Given a set of n unit-radius balls in R3, what is the number of lines
that are tangent to four of the balls in the set, and miss all the others?
(The balls are not necessarily disjoint.)

Origin [AAKS05].

77



Status/Conjectures Open, conjectured to be Ω(n3).

Motivation The number of lines tangent to four unit balls dominates the com-
binatorial complexity of the space of lines that avoid all the balls. And
this complexity is related to questions in visibility and in optimization.

Partial and Related Results In [AAKS05] it is established that the number
is O(n3+ϵ) for any ϵ > 0. The best lower bound is Ω(n2), which can be
achieved, for example, as follows.

Place n/4 balls separated along a horizontal line L1, and another n/4
along a parallel line L2 below, with each of the lower balls directly below
an upper ball with their centers 1 unit apart. Thus each pair of balls
overlap, their surfaces intersecting in a circle. Arrange a second set of
n/4 pairs of intersecting balls along lines L3 and L4, far from L1/L2 and
with all four lines parallel, and such that all circles of sphere intersections
are coplanar. Now it is easy to see that a line tangent to two circles of
intersection, one from the L1/L2 group, one from the L3/L4 group, is
tangent to four balls. And there are Ω(n2) such lines. (The same bound
can be achieved with disjoint balls with a similar arrangement, but the
analysis is slight more complex.)

The problem is also interesting if all balls are disjoint; it is not clear if
disjointness affects the answer asymptotically.

Appearances [AAKS05].

Categories combinatorial geometry

Entry Revision History J. O’Rourke, 25 Aug. 2005.
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Problem 62: Volume Maximizing Convex Shape

Statement Let C be a convex piece of paper; its boundary may be a smooth
curve, or a polygon. A perimeter halving folding is a folding of C ob-
tained by identifying two points x and y on the boundary of C that halve
the perimeter, and then folding C by “gluing” xy to yx. This always
results in a unique convex shape in 3D, a polyhedron if C is a convex
polygon [DO07]. What unit-area shape C achieves the maximum volume
possible via a perimeter-halving folding?
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Origin Posed by Joseph Malkevitch in 2002, in a slightly different form: for
polygons, and not restricting the folding to perimeter-halving. The mod-
ifications above were suggested at CCCG’05 [DO06]. The restriction to
perimeter halving eliminates some more complex foldings possible for some
convex polygons, and so in that sense simplifies the problem. The exten-
sion to smooth shapes is a natural generalization. Smooth shapes only
admit perimeter-halving foldings.

Status/Conjectures Open.

Partial and Related Results Even fixing the shape and finding the maxi-
mum volume perimeter halving for that shape is difficult. For a circular
disk, all perimeter halvings lead to a flat doubly-covered half disk, all of
volume zero. The only other shape for which the answer is known, and
then only empirically, is the case of C a square [ADO03]. The resulting
polyhedron of 6 vertices and 8 faces, shown in Fig. 3, achieves about 60%
of the volume of a unit-area sphere.

Figure 3: The maximum volume convex polyhedron foldable from a square.

Appearances [DO06].

Categories folding and unfolding

Entry Revision History J. O’Rourke, 26 Aug. 2005.

References

[ADO03] Rebecca Alexander, Heather Dyson, and Joseph O’Rourke. The
convex polyhedra foldable from a square. In Proc. 2002 Japan
Conf. Discrete Comput. Geom., volume 2866 of Lecture Notes
Comput. Sci., pages 38–50. Springer-Verlag, 2003.

[DO07] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Al-
gorithms: Linkages, Origami, Polyhedra. Cambridge University
Press, July 2007. http://www.gfalop.org.

79

http://www.gfalop.org


[DO06] Erik D. Demaine and Joseph O’Rourke. Open problems from
CCCG 2005. In Proc. 18th Canad. Conf. Comput. Geom., pages
75–80, 2006.

Problem 63: Dynamic Planar Nearest Neighbors

Statement Is there a data structure maintaining a set of n points in the plane
subject to insertions, deletions, and nearest-neighbor queries in O(log n)
time? A nearest-neighbor query asks to find a point among the set that
is nearest (in Euclidean distance) to a given a point in the plane. This
problem reduces to maintaining the convex hull of a set of n points in 3D
subject to insertions, deletions, and extreme-point queries.

Origin Uncertain, pending investigation.

Status/Conjectures Open.

Motivation This problem is the natural generalization of (1D) search trees to
2D. Standard balanced search tree data structures can maintain n points
on the real line subject to insertion, deletion, and predecessor and suc-
cessor queries (and thus nearest-neighbor queries) in O(log n) time per
operation. (More sophisticated data structures even attain O(1) time per
update.)

Partial and Related Results For 14 years, the authority on this problem
was Agarwal and Matoušek’s FOCS’92 paper [AM95] which describes two
data structures: one suports updates in O(nϵ) amortized time and queries
in O(log n) worst-case time, while the other suports updates in O(log2 n)
amortized time queries in O(nϵ) worst-case time, for any ϵ > 0. The
nearest-neighbor problem is a decomposable search problem, so when dele-
tions are forbidden, the general techniques of Bentley and Saxe [BS80]
yield an O(log2 n) amortized bound for updates and queries. In 2006,
Chan [Cha06] obtained the first polylogarithimc data structure for 3D con-
vex hulls and therefore 2D nearest neighbors. His data structure supports
insertions in O(log3 n) expected amortized time, deletions in O(log6 n) ex-
pected amortized time, and extreme-point or nearest-neighbor queries in
O(log2 n) worst-case time.

Related Open Problems Problem 1.

Categories convex hulls; data structures; Voronoi diagrams

Entry Revision History E. Demaine, 24 Jan. 2006.
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Problem 64: Edge-Unfolding Polycubes

Statement Is there any genus-zero orthogonal polyhedron P built by gluing
together cubes face-to-face that cannot be edge-unfolded, where all cube
edges on the surface of P are considered edges available for cutting? These
orthogonal polyhedra are sometimes known as polycubes, 3D versions of
2D polyominoes.

Origin George Hart and Joseph O’Rourke, 2004.

Status/Conjectures Open.

Motivation More general problems seem even more difficult.

Partial and Related Results This is a special case of a more general prob-
lem, which is equally open. The goal, as in Problem 1, is to cut the surface
and unfold without overlap. An edge unfolding only permits cutting along
edges of the polyhedron. A grid unfolding adds extra edges to the surface
by intersecting the polyhedron with planes parallel to coordinate planes
through every vertex, and so is easier to edge-unfold. Easier still is the
posed problem: The orthogonal polyhedron is built from cubes, and all
cube edges are available for cutting. Is there any such polyhedron that
cannot be edge-unfolded? Such an example would narrow the options,
but it may be that every orthogonal polyhedron can be grid-unfolded.
(An easy box-on-box example [BDD+98] shows that without some surface
refinement [DO05], not all orthogonal polyhedra can be edge-unfolded.)
The posed question is among the most specific whose answer would make
progress.

Only a few narrow subclasses of orthogonal polyhedra are known to have
grid-unfolding algorithms: orthotubes, orthostacks of orthogonally convex
slabs, and orthogonal terrains. See [O’R08].

Related Open Problems Problem 1: Edge-Unfolding Convex Polyhedra.
Problem 1: Vertex-Unfolding Polyhedra.
Problem 1: General Unfolding of Nonconvex Polyhedra.

Appearances [DO07]

Categories folding and unfolding; polyhedra

Entry Revision History J. O’Rourke, 14 Jul 2006, 16 Jul 2007.
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Problem 65: Magic Configurations

Statement Let a finite set of points P in the plane be given, with each point
assigned a positive real weight. P is called a magic configuration if every
line determined by two or more points has the same sum of weights, i.e.,
the sum of the weights of the points through which each line passes is
the same. The problem is to prove or disprove that there are only four
essentially distinct magic configurations:

1. Points in general position, with (e.g.) every point assigned weight 1.

2. All points collinear.

3. n− 1 points collinear with weight (e.g.) 1, and one point not on that
line with weight n− 2.

4. The 7-point configuration shown in Fig. 4, or its projective equiva-
lents.

Origin [Mur71]

Status/Conjectures Settled positively, 2007: [ABK+08]

Motivation The terminology “magic configuration” comes from the notion of
magic squares, 2D matrices such that every row, column, and (optionally)
diagonal sums to the same value.
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Figure 4: Edge midpoints have weight 2, while all other points have weight 1.
All nine lines have sum 4.

Partial and Related Results An ordinary line is one that passes through
exactly two points. Scaling weights of a magic configuration so that the
weights on each line sum to 1, the weight of the points on ordinary lines
must be 1

2 in any magic configuration other than the third example above.
It is known that, for n ≥ 3 noncollinear points, at least 6

13n lines must be
ordinary [CS93].

Settled in [ABK+08], the journal version of a paper that originally ap-
peared in the Proceedings of the 2007 Symposium on Computational Ge-
ometry.

Appearances Originally posed by U. S. R. Murty in [Mur71]. Reposed by
Murty at a June 2006 celebration of V. Chvátal’s 60th birthday. Two peo-
ple who heard this posing, X. Chen and P. Taslakian, brought the problem
to the conference Discrete and Computational Geometry—Twenty Years
Later in Snowbird, June 2006. In particular, Chen posed the problem at
the open-problem session.

Categories point sets

Entry Revision History J. O’Rourke, 14 Jul. 2006; E. Demaine, 15 Jul.
2006; J. O’Rourke, 16 Jul. 2008.
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Problem 66: Reflexivity of Point Sets

Statement Let ρ(S) be the fewest number of reflex vertices in a polygonization
of a 2D point set S, i.e., the fewest reflexivities of any simple polygon whose
vertex set is S. Let ρ(n) be the maximum of ρ(S) over all sets S with n
points. What is ρ(n)?

Origin [AFH+03]

Status/Conjectures Open.

Partial and Related Results In [AFH+03] the authors prove that ⌊n/4⌋ ≤
ρ(n) ≤ ⌈n/2⌉ and conjecture that ρ(n) = ⌊n/4⌋. The upper bound was
recently improved to 5

12n+O(1) ≈ 0.4167n in [AAK09].

Related Open Problems Problem 1: Simple Polygonalizations.

Categories polygons; point sets.

Entry Revision History J. O’Rourke, 3 Aug. 2006; 16 Jul 2008.
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Problem 67: Fair Partitioning of Convex Poly-
gons

Statement Define a fair partitioning of a polygon as a partition of it into a
finite number of pieces so that every piece has both the same area and
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the same perimeter. If all the resulting pieces are convex, call it a fair
convex partitioning. Given any positive integer n, can any convex polygon
be convex fair partitioned into n pieces?

If the answer is “Not always,” how does one decide the possibility of such
a partitioning for a given polygon and a given n? And if a fair convex
partition exists for a specific polygon, how does one find a fair partitioning
that minimizes the total length of the cut segments, or minimizes the sum
of the perimeters of the pieces?

And finally, what could one say about higher dimensional analogs of this
question?

Origin Posed by R. Nandakumar and N. Ramana Rao, June 2007.

Status/Conjectures Open. The originators tend to believe every convex
polygon allows a fair convex partition into n pieces for any n. There
have been recent advances in 2010: Aronov and Hubard [AH10], and
independently Karasev [Kar10], have established the conjecture for any
prime power, n = pk.

Partial and Related Results See [NR08] for an introduction and survey and
proof that the conjecture holds for n = 2, and a proof for n = 4. The
conjecture has been established for n = 3 in [BBS10].

There is work on partitioning convex polygons into equal area convex
pieces so that every piece equally shares the boundary of the given target
polygon: [ANRCU98] [AKK+98].

A proof of a weaker result—that any polygon allows fair partitioning for
any n (where the pieces need not be convex) is proposed at http://

nandacumar.blogspot.com/2006/10/cutting-shapes-ii.html.

Categories polygons; partitioning

Entry Revision History R. Nandakumar and N. Ramana Rao, 14 Jul 2007,
17 Sep 2007; J. O’Rourke, 1 Jan 2009; 23 Jan 2009; 30 Dec 2010, 16 Oct
2020.

References

[AH10] Boris Aronov and Alfredo Hubard. Convex equipartitions of vol-
ume and surface area. http://arxiv.org/abs/1010.4611, Oc-
tober 2010.

[AKK+98] Jin Akiyama, A. Kaneko, M. Kano, Gisaku Nakamura, Eduardo
Rivera-Campo, S. Tokunaga, and Jorge Urrutia. Radial perfect
partitions of convex sets in the plane. In Japan Conf. Discrete
Comput. Geom., pages 1–13, 1998.

85

http://nandacumar.blogspot.com/2006/10/cutting-shapes-ii.html
http://nandacumar.blogspot.com/2006/10/cutting-shapes-ii.html
http://arxiv.org/abs/1010.4611


[ANRCU98] Jin Akiyama, Gisaku Nakamura, Eduardo Rivera-Campo, and
Jorge Urrutia. Perfect divisions of a cake. In Proc. Canad. Conf.
Comput. Geom., pages 114–115, 1998.
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Problem 68: Rolling a Die over a Labeled Board

Statement Label the faces of a unit cube with numbers 1–6 as in a die. Place
the cube to sit on an integer lattice grid, with one corner at the origin
and sides aligned with the axes. Completely label every lattice square of
a rectangular “board” R, whose corner is at the origin, with numbers in
{1, 2, 3, 4, 5, 6}. The problem is to roll the cube over its edges so that, for
each square s ∈ B labeled l, the cube lands on s precisely once, and when
it does so, the top face of the cube has label l.

What is the computational complexity of solving an instance of this prob-
lem?

Origin Version posed by O’Rourke at the 2005 Canadian Conference on Com-
putational Geometry [DO06], and subsequently substantially developed
and embellished in [BBD+07].

Status/Conjectures Open.

Motivation This problem was inspired by van Deventer’s “Rolling block mazes” [vD04].
The paper [BBD+07] uncovered a rich history to rolling cube puzzles going
back to the 1960’s, which will not be repeated here.

Partial and Related Results The original posed problem labeled an arbi-
trary connected set S of squares, rather than a rectangular board R; the
cells outside of S are free, and may be visited any number of times with
any number on the die top. That former problem is solved in [BBD+07],
which establishes that, as conjectured, the problem is NP-complete.

The posed problem has no free cells, and in fact the labels are all in a
rectangular board R. This seems the most interesting specific variant,
for it is left possible in [BBD+07] that, if there is a solution for R, it is
“uniquely rollable.” They establish that there are boards with labeled and
blocked (i.e., forbidden) cells for which rollable Hamiltonian cycles are not
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unique, but they leave open fully labeled boards. The uniquely-rollable
conjecture is settled for all boards with side lengths at most 8.

Appearances [DO06]; see above.

Categories combinatorial geometry

Entry Revision History J. O’Rourke, 17 Jul 2007; 2 Feb 2012.
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Problem 69: Isoceles Planar Graph Drawing

Statement Given a planar graph that is interior triangulated (all interior faces
are triangles), is there a staight-line drawing of the graph such that each
face is an isoceles triangle (i.e., it has two equal-length sides)?

The problem is worth studying both when the drawing must be planar
(no crossings allowed) and when it is not.

If such drawings exist, then it is also worth studying what grid-size is
needed, and whether it can be done with integer coordinates at all. If
such drawings do not always exist, NP-hardness should be investigated.

Origin Joe Malkevitch at Graph Drawing ’99.

Status/Conjectures Settled negatively in 2010: [Fra10].

Partial and Related Results If the graph is a planar 3-tree (i.e., can be
obtained by starting from a triangle and repeatedly adding a vertex of
degree 3 inside a face, adjacent to all other vertices in the face), then
such a drawing can easily be obtained by always placing the vertex at the
centroid of the face. However, this drawing will in general be non-planar.

Of particular interest therefore, are planar graphs of treewidth 4 and
higher.
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The problem was solved negatively in [Fra10]: Theorem: “There exists
an infinite class of maximal planar graphs that admit no isosceles planar
drawing.” Frati raises the new question of whether or not every triangu-
lation admits a possibly nonplanar isosceles drawing.

Categories graph drawing; planar graphs

Entry Revision History T. Biedl, 2 Dec. 2008; J. O’Rourke, 29 Dec. 2008;
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Problem 70: Yao-Yao Graph a Spanner?

Statement Is the Yao-Yao Graph a t-spanner for constant t? A geometric
graph is a t-spanner (or just a spanner) if, for every pair of nodes, the
shortest distance between the nodes following the edges of the graph is
at most t times the Euclidean distance between them. See below for the
definition of the Yao-Yao graph.

Origin [WL02](?)

Status/Conjectures Open.

Partial and Related Results The Yao graph Yk [Yao82] is defined as follows.
At each node u, any k equally-separated rays originated at u define k
cones. In each cone, choose the shortest edge uv among all edges from u,
if there are any, and add a directed edge −→uv to Yk. It is known that for the
undirected Yk, k = 4, k ≥ 6, Yk a t-spanner (e.g., see [BDD+10]). The Yao-
Yao graph Y Yk [WL02] starts with the directed Yao graph, and reduces
the maximum degree of nodes as follows. At each node u, all incoming
edges from each cone are discarded, except for the shortest one −→vu. And
now the result is treated as an undirected graph. Many properties of Y Yk

have been established, but whether or not Y Yk is a t-spanner remains
open.

Categories spanners; geometric graphs

Entry Revision History J. O’Rourke, 29 Dec. 2008.

88



References

[BDD+10] Prosenjit Bose, Mirela Damian, Karim Douieb, Joseph O’Rourke,
Ben Seamone, Michiel Smid, and Stefanie Wurher. π/2-angle Yao
graphs are spanners. arXiv: 1001.2913v1 [cs.CG], January 2010.

[WL02] Yu Wang and Xiang-Yang Li. Distributed spanner with bounded
degree for wireless ad hoc networks. In IPDPS ’02: Proc. of the
16th IEEE Int. Parallel and Distributed Processing Symposium,
pages 194–201, 2002.

[Yao82] A. C. Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. SIAM J. Comput.,
11(4):721–736, 1982.

Problem 71: Stretch-Factor for Points in Convex
Position

Statement For points S in convex position (i.e., every point is on the hull
of S), is the Delaunay triangulation of S a (π/2)-spanner? A geometric
graph is a t-spanner (or just a spanner) if, for every pair of nodes, the
shortest distance between the nodes following the edges of the graph is at
most t times the Euclidean distance between them. The constant t is the
stretch factor or dilation.

Origin Prosenjit Bose [DO08].

Status/Conjectures Now closed: false. [This entry awaiting updating.]

Partial and Related Results Chew conjectured that the Delaunay triangu-
lation is a t-spanner [Che89] for some constant t. Dobkin et al. [DFS90]
established this for t = π(1 +

√
5)/2 ≈ 5.08. The value of t was im-

proved to 2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin [KG92], and further
strengthened in [BM04]. Chew showed that t is π/2 ≈ 1.57 for points on
a circle, providing a lower bound. “It is widely believed that, for every
set of points in R2, the Delaunay triangulation is a (π/2)-spanner” [NS07,
p. 470].

This history suggests the special case posed above.

There is a new forthcoming result: [CKX09].

Appearances [DO08].

Categories spanners; Delaunay triangulations

Entry Revision History J. O’Rourke, 29 Dec. 2008; 4 July 2009; 1 Apr.
2010.
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Problem 72: Polyhedron with Regular Pentagon
Faces

Statement Let M be a closed polyhedral surface homeomorphic to S2 which
is entirely composed of equal regular pentagons. If M is immersed in 3-
space, is it necessarily the boundary of a union of solid dodecahedra that
are glued together at common facets?

Origin Richard Kenyon, first posed in 2006.

Status/Conjectures Open.

Partial and Related Results The corresponding question for equal squares
has a positive answer. The question for surfaces embedded in 3-space is
also interesting and open. The Kepler-Poinsot great dodecahedron has
regular pentagon faces, and is immersed, but is not homeomorphic to S2

(V − E + F = −6).

Appearances Re-posed at Oberwolfach Workshop, Jan. 2009.

Categories polyhedra

Entry Revision History J. O’Rourke, 23 Jan. 2009.
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Problem 73: Congruent Partitions of Polygons

Statement Partition a given polygon P into n mutually congruent pieces so
that the area of P not covered by the union of the pieces is as small
as possible. A partition which leaves out the least area is an optimal
congruent partition for that n. If a congruent partition is a perfect cover,
leaving no area uncovered, then it is called a perfect congruent partition.
Two polygons are congruent if one can be made to coincide with the other
by translation, rotation, or reflection (flipping over).

Origin Posed by R. Nandakumar, May 2009.

Status/Conjectures Please see below.

Partial and Related Results A new introduction to the problem is now avail-
able: [Nan10a].

1. It is known that there exist quadrilaterals with no perfect congru-
ent partition for any n: http://domino.research.ibm.com/Comm/

wwwr_ponder.nsf/challenges/December2003.html.

2. Deciding whether P has a perfect congruent partition appears little
explored for n > 2. The case of n = 2 is solved in [EKFIR08] with
an O(n3) algorithm.

3. If congruence is restricted to translation and rotation only, to what
extent does the problem change?

4. Can the left-over area be upper-bounded as a function of P and n?
An attempt for n = 2 is offered in [Nan10b].

Related Open Problems Problem 1

Categories polygons; partitioning; dissections
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Problem 74: Slicing Axes-Parallel Rectangles

Statement Let us say that two rectangles in the place are independent if both
their x- and y-axis projections are disjoint. A set of rectangles is then
independent if the rectangles are pairwise independent. Suppose that a
collection of axes-parallel rectangles contains no independent set of size m
or greater. What is the minimal number, f(m), of horizontal and vertical
lines needed to slice every rectangle in the collection?

Origin Vincent Vatter, Jun 2009.

Status/Conjectures It was known that f(m) exists and is at most exponen-
tial. An advance was made in 2010 by Werner and Lenz, who established
a quadratic upper bound, O(m2), in [WL10]. They also uncovered a long
history of the problem under other names, e.g., “d-separated interval pierc-
ing.” In fact, the result was already established by Tardos and Karolyi
earlier. See the cited paper for more details.

But, as pointed out by Pablo Soberón, apparently an earlier result [Kai97,
Thm. 1.4], established f(m) ≤ 2m. This largely solves the problem.

Partial and Related Results The problem arises in the study of permuta-
tion classes, see [Vat08], where it was proved that f(m) exists and is at
most exponential.

Categories combinatorial geometry

Entry Revision History V. Vatter, 24 June 2009; J.O’Rourke, 16 Mar. 2012;
P. Soberón, 3 May 2012.
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Problem 75: Edge-Coloring Geometric Graphs

Statement For a set of n points in the plane in general position, draw a straight
segment between every pair of points. What is the minimum number of
colors that suffice to color the edges such that no two edges that cross
have the same color? (With the general position assumption, all crossings
are proper crossings.)
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Origin Ferran Hurtado: [AGH+05].

Status/Conjectures Open.

Partial and Related Results Each color class determines a plane subgraph
of the complete graph. Because one can arrange for n/2 pairwise crossing
edges, n/2 is a lower bound. The best upper bound is in [BHRCW06]:
n−

√
n/12. It has been conjectured that (1− ϵ)n is an upper bound for

some ϵ > 0.

Appearances This description relies on that in the Open Problem Garden,
written by David Wood. His posting lists several related variants.

Categories geometric graphs

Entry Revision History J. O’Rourke, 1 Apr. 2010.
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Problem 76: Equiprojective Polyhedra

Statement Identify or construct all k-equiprojective polyhedra. A polyhedron
P is k-equiprojective if its orthogonal projection to a plane is a k-gon in
every direction not parallel to a face of P . Thus a cube is 6-equiprojective.

Origin Geoffrey Shephard in [She68].

Status/Conjectures Open.

Partial and Related Results A characterization is detailed in [HL08]: “A
polyhedron is equiprojective iff its set of edge-face pairs can be partitioned
into compensating pairs.” For term definitions, see the original paper.
Building on this work, a recent paper [HHLO+10] establishes that any
equiprojective polyhedron has at least one pair of parallel faces, that there
is no 3- or 4-equiprojective polyhedron, and the triangular prism is the
only 5-equiprojective polyhedron.

Related Open Problems A generalization of the problem was posted on Math-
Overflow, 11Feb11: [O’R11]

Appearances Also in [CFG90], Problem B10.
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Problem 77: Zipper Unfoldings of Convex Poly-
hedra

Statement Does every convex polyhedron P have a zipper unfolding? A zipper
unfolding cuts open P via a single path, necessarily a Hamiltonian path
(to span all vertices), and unfolds the surface to a non-overlapping polygon
in the plane. The segments of the path need not lie along edges of P .

Origin Posed as Open Problem 2 in [DDL+10], which introduced the term
“zipper unfolding.”

Status/Conjectures Open.

Partial and Related Results With the restriction that the cuts follow edges,
any P without a Hamiltonian path in its 1-skeleton has no zipper edge-
unfolding, e.g., a rhombic dodecahedron. (Such polyhedra have been stud-
ied, e.g., in [Bro61].)

Related Open Problems Problem 1.

Categories polyhedra

Entry Revision History J. O’Rourke, 7 Feb. 2012.
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Problem 78: Rectangling a Rectangle

Statement Do there exist rectangles that may be partitioned into a finite num-
ber n of rectangular pieces of equal area but with all perimeters different?

Origin Posed by R. Nandakumar, Feb. 2012: http://nandacumar.blogspot.
in/2012/02/packing-rectangles.html. The phrase “rectangling a rect-
angle” was introduced by Michael Brand at http://brand.site.co.il/
riddles/201203q.html.

Status A partial solution for rectangular pieces with real edge lengths is known—
a spiral layout of 7 rectangular pieces forming a larger rectangle. See
Brand’s web site. The question remains open for tiling rectangles with
rational edge lengths.

Conjecture If all edge lengths of the pieces are required to be rational, no such
partition is possible (R. Nandakumar and N. Ramana Rao).

Further questions The question may be extended to higher dimensions d in
the obvious way. The posers believe there is no solution in Rd for d ≥ 3.

Categories packing; partitioning.

Entry Revision History R. Nandakumar and N. Ramana Rao, Mar. 14,
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