3 minute music composition using an implementation of

Mozart’s Musikalisches Würfelspiel (Mozart’s dice game)

CSC 354 – Seminar on Digital Music and Sound Processing

Michiko Charley

5/2/2003
Introduction

The basic requirements of the piece included: must have 2 or more sound parts, be a hybrid of at least two algorithms, contain some structural organization with at least two layers, and it must be expressive, using dynamics and/or articulation. This is a piece composed by using various forms of Mozart’s Musikalishes Wurfelspiel, or Mozart’s dice game. Having only started composing music this semester and being new to theory, using a piece that already had rules set up seemed like a good introduction to various forms of musical theory. This composition was completely done in Keykit. I would first explain the Mozart’s dice game part of the composition, and then explain what was done with the results of the dice game, as well as the other instruments added.

Mozart’s Musikalisches Würfelspiel

"Anleitung
Walzer oder Schleifer mit 2 Würfeln zu componieren,
ohne Musikalisch zu seyn,
noch von der Composition etwas zu verstehenŠ"

"Instruction
to compose a waltz or a slurred note with two dice,
without being musically gifted,
nor knowing anything about composition"
W.A. Mozart

In the late 1700's, some musicians and composers enjoyed creating dice games that would allow people to create different melodies by randomly putting together musical fragments from an array of choices. The most famous of these games is the Musikalishes Würfelspiel (Musical Dice Game), which is often attributed to Wolfgang Amadeus Mozart (1756-1791). The idea of the dice game is to cut and paste pre-written measures of music together to create a minuet. It combines a series of short phrases selected randomly, based on the rolls of dice, to form a two part waltz. It is one of the earliest examples of chance music. There are many variations on this dice game that were created since, such as the trio
.

The file mozart_dice.k and mozart_dice_samples.k together make an implementation of such a game. In this particular implementation, which creates a Viennese minuet in the style of the late 1700’s, there are 16 measures total, with 2 choices for measure 8 and 16, and 11 choices for the other 14 measures
. Mozart_dice_samples.k contains all the sound samples. The sound samples are separated into 124 treble and 54 bass parts, which are then combined to create one of the 158 sound samples for one of the 16 measures. The treble was defined as Treble plus the sample number (example: Treble40 = ‘f4d48, d4d48, b4d48’), bass as Bass plus the sample number (example: Bass34 = ‘c2d96 | g2d96’), and the sound sample of the entire measure as sample plus the measure number plus the sample number (example: Sample14_9 = Treble93 | Bass2). I probably would not have organized the samples this way, except that I was fortunate enough to find the staff notes and noticed, even at a quick glance, that there are repeating sections, although not necessarily at the same sample. This organization turns out to be useful for organizing multiple instruments, to be explained later, in flutepart().
The functions in mozart_dice.k calls upon the samples in mozart_dice_samples.k to create and return phrases. The makeminuet() function calls on 16 more functions (each named part1(), part2() . . . part16()), each returning a phrase, that are added together to create an entire minuet, with all 16 measures. Each of the parts selects from 11 different snippets except for part 8 and 16, which select from only 2. The parts that select from 11 different snippets choose the snippets in a way that simulates rolling a pair of dice, as in, two rand()s are called, and the sum added, in order to determine the selection. This is significant because then the probability that a certain snippet is selected is not equal to all the other snippets
. For example, there is only one way to get a 2, which is to roll a 1 on each dice. However, there are 6 different ways to get a sum of 7, which are: 1+6, 2+5, 3+4, 4+3, 5+2, and 6+1. Here are the probabilities for getting a certain sum for rolling a pair of dice:

	Choices for sum
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Probability
	1/36
	1/18
	1/12
	1/9
	5/36
	1/6
	5/36
	1/9
	1/12
	1/18
	1/36

As can be seen, all samples are not equal. How this affects the overall feel of the entire minuet is questionable, because no matter what the result is, it satisfies the requirements of a late 1700s Viennese minuet.

Composition – mozartpart()

After the Mozart dice game was implemented, the question became what to do with the phrases it generated. As was already mentioned, the basic requirements of the piece included: must have 2 or more sound parts, be a hybrid of at least two algorithms, contain some structural organization with at least two layers, and it must be expressive, using dynamics and/or articulation. The main part of the manipulation of the minuet was done in mozartpart() in instruments.k.

Having only dabbled in musical composition for the duration of this Digital Music class, I explored upon possible composition methods. After reading the Dramatic Shape section of the GEMS series
, I composed a beginning and an end to the piece. Because the minuet already composed came with its own climaxes and resolutions in the form of pitches and 3/8 time, the main way I was able to introduce different levels of intensity was by changing the volume and the tempo of the minuet already created (Figure 1). The volume was altered by calling randomvol(phrase, lower, upper), defined in finalproject.k, where lower and upper are the volume range, and each note in the phrase are assigned a random volume within that range. The tempo was changed by calling scatimes(phrase, factor), defined in basic1.k, where the phrase is scaled by the factor. In preparation to use the minuet in different ways, I created more functions in mozart_dice.k, such as beginninghalf(), lasthalf(), firstquarter(), secondquarter(), thirdquarter(), and lastquarter(), which calls different parts of the minuet, in an attempt to understand how the minuet by itself resolved, and to hear how there was a resolution or lack thereof in each quarter.

In an attempt to grab the listener’s attention at the beginning, I called beginninghalf(), scaled it by 3 to make it slower, and gave it a mid-range volume, followed by a 2 beat rest and then calling thirdquarter() at the highest volume range, then finished it by calling lastquarter() scaled by 1.5 with a slightly lower volume range than thirdquarter(). The idea was to gradually ease into the main part of the composition.

For the ending, rests were introduced. There is a six beat rest after the main part of the composition, followed by a thirdquarter() scaled by 1.6 at mid-range volume, then followed by a rest, this time two beats, followed by firstquarter() scaled by 1.2 at a slightly higher volume range than thirdquarter(), immediately followed by a makeminuet() with a higher and wider volume range. The conclusion is an echo() of the lastquarter() at a high volume, echoed three times with six beats between each echo.

For the main part of the Mozart part of the composition, a stochastic algorithm in stoch.k was used, called stochastic1(number, phrase), where number is the number of times the algorithm is repeated for the phrase. It adds to the phrase an altered version of the phrase for the number of times repeated, where there was a certain probability of how the phrase is altered. The original phrase is left unaltered, so the original phrase is used as a template to make changes on every time. A makeminuet() is used for the phrase, scaled by two. The functions used to create the altered version of the phrase are all in basic1.k. The items in the stochastic algorithm have the following probabilities and properties:

	reverse(phrase)
	40%
	Reverse the phrase in time, so the first notes come last, and the last notes come first.

	revpitch(phrase)
	30%

	Reverse the pitches of a phrase (e.g. the pitch of the first note will become the pitch of the last note). The timing is left intact.

	flip(phrase[,about])
	20%

	Flip the pitches of the specified phrase about some intermediate pitch (i.e. high notes become lower, and low notes become higher). Given a single argument, the flip is done about the average pitch of the original phrase. A second argument can specify a particular pitch about which to flip.

	swapnote(phrase)
	10%
	Swap every two notes in the phrase

Composition – flutepart()

For the part of the flute, the idea was to generate a sound that blends in and stands out with the Mozart part of the piece. In the mid-semester presentation of various algorithms, Heidi Johnson and Laura Simpson were presenting the pentatonic scales. In the handout, there was a mentioning that, “the sound that comes from a pentatonic scale gives a distinctly non-Western sound and is used mostly for the composition of Eastern and Western folk songs and more recently in Jazz improvisation.” To expand on this idea, scales.k includes all the functions to alter the notes of a phrase to a major or a minor pentatonic scale, defined as amajpent(phrase), bmajpent(phrase), cmajpent(phrase), dmajpent(phrase), emajpent(phrase), fmajpent(phrase), gmajpent(phrase), aminpent(phrase), bminpent(phrase), cminpent(phrase), dminpent(phrase), eminpent(phrase), fminpent(phrase), and gminpent(phrase)
. An idea was to continue to expand this to include Mixolydian and other scales, but those were already defined in the default libraries.

The flute was chosen because it seemed to contrast enough with the mozartpart() done in piano, without overwhelming it. Also, it initially seemed as if it required less composition in creating the individual notes than, say, the viola, which might require its own rules and notes for composition, especially in combination with the piano. The f major pentatonic scale was chosen because it consistently produced a sound that was neutral with the makeminuet(). The flute was initially played in parallel with the mozartpart(), calling makeminuet(), but this combination proved to clash with the mozartpart() at certain notes, when the same notes played at the same time in both functions, even at low volumes. After reviewing some notes about parallel fifths and octaves
, and why they should be avoided, a separate file called mozart_dice_bassonly.k was created, with functions such as bassonlymakeminuet(), that returned only the bass parts of the minuet. Other functions included: bassonlyfirsthalf(), bassonlylasthalf(), bassonlyfirstquarter(), bassonlysecondquarter(), bassonlythirdquarter(), and bassonlylastquarter().

The flutepart() is played in parallel with the mozartpart(). All notes are played at a low volume. Initially, there is a rest of 28 beats, in order not to disturb the initial slowness of the mozartpart().Then it plays the bassonlyfirsthalf() scaled at 1.5 which is coordinated to end as the first climax begins. Then there is a rest of 56 beats, when the makeminuet() scaled at 1.1 is played. Then there is a 37 beats long rest, followed by a bassonlylasthalf() scaled at 1.1. The end of the flutepart() is the repetition of 37 beat rest and bassonlymakeminuet() scaled at 1.5. It is timed to end in the latter half of the stochastic part of the mozartpart(). I did not want the flute to distract from the ending of the mozartpart().

All in all, I think that I made a progress in understanding some musical theories, such as parallel fifths and dynamics. And most importantly, had fun composing!

References
Chuang, John. Mozart's Musikalisches Würfelspiel - A Musical Dice Game for Composing a Minuet, http://sunsite.univie.ac.at/Mozart/dice/rules.html 1995

The Seven By Nine Squares, http://www.thing.de/projekte/7:9%23/mozart.html

StudyWorks! Online : The Musical Dice Game http://www.studyworksonline.com/cda/content/article/0,,EXP1237_NAV2-95_SAR1238,00.shtml – MathSoft Engineering & Education, 2003

Fields, Matthew H. The GEMS series, http://www.cosmoedu.net/DoctorFields/gems.pdf 1992

McCormack, Jon. Grammar Based Music Composition. Monash University
Messick, Paul. Maximum MIDI: Music Applications in C++. 1998

Servos, Katie – A member of the Smith College Chamber Singers who helped me confirm whether my understanding of the musical theories are correct.

[image: image1.png]enbisel
0oL~

>

xapes
nuyew
~0910n

sixaps
wadfouy
()renuueuiuosseq
05~ 0f fon

Zixapes
() souenbisiy

Sixaes
uadfewy
)enuwAewAUOSSeq
05~ 0¢ fon

Lixaps
wadeuy

0 sewpselduosseq
05~ 0€ 08

6

Dxores
(nutew) px Lo1seUPOTS

oz1on

Lixaes Sixaes
wadfewy Juadlewy
(Orenuapewstuosseq |z fl () sewsipduosseq

05~ 0¢ fon 05~ 0¢ fon

() vedainy

s
nbise
~ 00t fon

() Medyezow

>0—35Ew

Figure 1.

Timescale: 3/8
1 beat = 48 clicks

e.g.

rd96 = 2 beat rest

� � HYPERLINK "http://www.thing.de/projekte/7:9%23/mozart.html" ��http://www.thing.de/projekte/7:9%23/mozart.html� - The Seven By Nine Squares

� � HYPERLINK "http://sunsite.univie.ac.at/Mozart/dice/rules.html" ��http://sunsite.univie.ac.at/Mozart/dice/rules.html� - Mozart's Musikalisches Würfelspiel - A Musical Dice Game for Composing a Minuet, John Chuang, 1995

� � HYPERLINK "http://www.studyworksonline.com/cda/content/article/0,,EXP1237_NAV2-95_SAR1238,00.shtml" ��http://www.studyworksonline.com/cda/content/article/0,,EXP1237_NAV2-95_SAR1238,00.shtml� – StudyWorks! Online : The Musical Dice Game, MathSoft Engineering & Education, 2003

� � HYPERLINK "http://www.studyworksonline.com/cda/content/article/0,,EXP1237_NAV2-95_SAR1256,00.shtml" ��http://www.studyworksonline.com/cda/content/article/0,,EXP1237_NAV2-95_SAR1256,00.shtml� – StudyWorks! Online : The Musical Dice Game, MathSoft Engineering & Education, 2003

� � HYPERLINK "http://www.cosmoedu.net/DoctorFields/gems.pdf" ��http://www.cosmoedu.net/DoctorFields/gems.pdf� - The GEMS series, Matthew H. Fields, 1992

� From code created by Heidi Johnson and Laura Simpson for their presentation on pentatonic scales.

� � HYPERLINK "http://www.cosmoedu.net/DoctorFields/gems.pdf" ��http://www.cosmoedu.net/DoctorFields/gems.pdf� - The GEMS series: Parallel fifths and octaves – why I bother about them., Matthew H. Fields, 1992

